

CENSUS S.A., 128 Andrea Syngrou Ave, 11745, Athens, Greece. Tel: +30-210-220-8989/8990, Email: eu@census-labs.com
Web: https://www.census-labs.com

Challenging the Boundaries of

Confidential Computing for AI

A Cross-Component Attestation Study on GCP

Cybersecurity Engineering Technical Report

Version 1.1

April 25, 2025

PUBLIC

Document History

Version Revision Date Description of changes Pages

1 0 2025-04-16
First version released and shared with Google & Intel for
comments.

All

1 1 2025-04-25

Fixed typo in Figures 2 & 6, and in attestation verification
Method-2. Added note about ITTA composite attestation
status on GCP.

9, 19,
20, 31

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 3 of 31

Table of Contents

Document History ..2

Abstract ..4

1 Introduction and Scope ...5

2 Reference Environment ..5

3 CPU Attestation Evaluation ...6

3.1 Cloud Image Validation ..7

3.2 Key Hierarchy and Scope ..8

3.3 Attestation Sequence .. 10

3.4 Intel Tiber Trust Authority Flow .. 12

3.5 ICS Attestation Flow .. 14

3.6 TCB Build Reproducibility .. 16

3.7 Deployment Considerations .. 17

4 GPU Attestation Evaluation ... 19

4.1 Implementation Details ... 19

4.2 Data Channels and Key Hierarchy ... 21

4.3 Deployment Considerations .. 24

5 Security Findings .. 29

5.1 Environment and Runtime Behavior ... 29

5.2 CPU Attestation and TCB Transparency .. 29

5.3 Attestation Integrity and Trust Model Inefficiencies .. 29

5.4 GPU Deployment and MIG Support .. 30

6 Concluding Remarks ... 30

Acronyms and Abbreviations .. 31

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 4 of 31

Abstract

This report presents a technical evaluation of Confidential Computing capabilities in Google Cloud

Platform (GCP), focusing on the integration of Intel Trust Domain Extensions (TDX) and NVIDIA H100

GPUs. The objective is to assess whether hardware-based attestation can be achieved consistently

across both CPU and GPU components within a Confidential VM and to identify potential limitations

in establishing end-to-end trust in such hybrid configurations.

The study was conducted on early-access GCP A3 instances equipped with Intel Sapphire Rapids CPUs

and NVIDIA H100 Tensor Core GPUs. Confidential VMs were deployed and assessed using open-source

tooling alongside vendor services such as Intel’s Trust Authority and NVIDIA’s Remote Attestation

Service (NRAS). The evaluation covered quote generation, measurement reproducibility, cryptographic

key hierarchies, and runtime verification workflows.

While core attestation flows performed as expected, the evaluation surfaced some security limitations.

These include: opaque firmware trust anchors that cannot be independently verified, quote signing

mechanics that concentrate trust in vendors, inconsistencies in secure storage models, and the

unavailability of Multi-Instance GPU (MIG) mode in confidential configurations. These findings suggest

the need for further improvements in the surrounding ecosystem before consistent, verifiable trust

guarantees can be delivered at scale.

The report outlines the technical architecture, attestation processes, and tooling used in this

evaluation, with a summary of findings that highlight the current strengths and constraints of

Confidential GPU deployments in cloud setups.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 5 of 31

1 Introduction and Scope

As AI/ML workloads become increasingly sensitive and distributed, the demand for verifiable compute

integrity in untrusted environments has accelerated. Confidential Computing has emerged as a key

strategy for securing data in use, especially when combined with GPU acceleration for model training

and inference. This report evaluates the integration of Intel TDX-based Confidential VMs with NVIDIA

H100 GPUs on Google Cloud Platform (GCP), with the goal of determining whether attestation and

trust can be extended consistently across both components.

This evaluation explores the feasibility of establishing end-to-end attestation workflows, identifying

the trust boundaries and operational limitations of GCP’s early-access A3 instances. The analysis uses

vendor-provided attestation services (Intel Trust Authority, NVIDIA NRAS) and open-source tooling to

validate CPU and GPU components, examine key hierarchies, and verify runtime integrity.

The sections that follow document the technical setup, attestation process, and deployment

considerations. A dedicated Security Findings section summarizes the key observations and

implementation inefficiencies uncovered during the evaluation.

2 Reference Environment

The environment is hosted on Google Cloud Platform (GCP) using early-access A3 instances, which

combine Intel Sapphire Rapids CPUs with NVIDIA H100 Tensor Core GPUs. These machines were

accessed through GCP’s private preview program, in which CENSUS is a participating member.

At the time of testing, it was not possible to launch Confidential VMs with H100 GPUs directly via the

GCP Web UI or CLI. Instead, instance groups were used to allocate the necessary resources. Once

provisioned, setup typically completed within minutes, unlike standard H100 VM requests, which

could remain pending for up to two weeks.

The base image setup followed Google’s documentation, while NVIDIA’s more recent deployment

guidance was used to configure both host and guest environments. A custom initialization script was

developed to automate the installation of required drivers and libraries at first boot. Overall

provisioning took approximately 20 minutes.

After each reboot, the guest VM was required to transition the GPU into a “ready” state before

workloads could run. Although this state is not technically defined or reflected in the attestation

report, its enforcement acts as a practical safeguard, blocking execution until the environment is

correctly initialized.

All further attestation and validation operations documented in this report are carried out within this

controlled deployment.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 6 of 31

3 CPU Attestation Evaluation

The CPU attestation workflow establishes the foundation of trust in the Confidential VM. In this

evaluation, Intel Trust Domain Extensions (TDX) were used to provide memory isolation and support

for remote attestation in a cloud-hosted virtual environment.

To generate attestation quotes from within the guest VM, the google/go-tdx-guest library was used.

This library interacts with the Linux kernel’s configfs-tsm subsystem, abstracting the interface to

various Confidential Computing backends. However, an Intel TDX-enabled VM cannot generate a

directly verifiable quote. It produces a local report, which must be handed off to a Quoting Enclave

(TDQE) operating outside the VM. The TDQE signs the final attestation quote with a platform-derived

key, producing a verifiable response suitable for remote challengers.

During testing, this quote was verified using both Intel Trust Authority and the publicly available Intel

Provisioning Certification Service (PCS). The validation process examined key measurements recorded

in the quote and compared them to known baselines or expected values.

A set of fields in the attestation quote were identified as critical for verification:

• MRSEAM: Measurement of the Intel TDX module. This value reflects the state and integrity of

the system-level TDX runtime.

• MRTD: Measurement of the initial contents of the guest’s Trust Domain (TD), typically

capturing the state of the guest firmware (TDVF).

• RTMR[0–3]: Runtime Measurement Registers. These record extensible measurements during

the boot process and runtime operations. They serve a role similar to TPM’s Platform

Configuration Registers (PCRs).

• REPORTDATA: A field provided by the guest at quote generation time. It typically contains a

cryptographic nonce, hash of session-specific material, or application-defined metadata.

These illustrate the raw values used during evaluation to confirm measurement reproducibility.

It is important to note that Intel has the ability to resign attestation keys using the PCK private key,

since the certificate chain remains valid regardless of who submitted the quote. This makes it essential

for clients to validate the measurements and embedded fields themselves, rather than relying solely

on the verdict of the attestation service.

An overview of the quote generation flow by an Intel TDX Guest is illustrated in the following figure.

https://github.com/google/go-tdx-guest

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 7 of 31

Figure 1 - Quote generation flow by an Intel TDX Guest

3.1 Cloud Image Validation

To establish trust in a Confidential VM, it is essential to verify that the VM was launched with a known

and intended system configuration. This is achieved by validating a combination of launch-time and

runtime measurements embedded in the attestation quote, specifically the MRTD and RTMR[0–3]

registers.

A dedicated proof-of-concept implementation was developed to test the reproducibility of these

measurement values. The process involved:

1. Fetching the latest Ubuntu 24.04 cloud image,

2. Generating a Unified Kernel Image (UKI) bundling the kernel, initrd, and command-line

arguments,

3. Deploying the image to GCP using Confidential VM-compatible settings,

4. Parsing the vTPM event log to extract expected values and compare them against those

reported in the attestation quote.

This reproducibility check demonstrated that several registers, particularly RTMR1, could be matched

precisely. However, certain aspects remain nuanced:

• RTMR2 and RTMR2 were observed to remain in their default (zeroed) state. This is expected in

configurations that directly boot a UKI and do not use intermediate bootloaders such as

GRUB.

• RTMR0 was not precomputed during the PoC and remains more complex to reproduce due to

variability introduced by runtime extensions or kernel-level events.

• MRTD, which reflects the measurement of the Trust Domain Virtual Firmware (TDVF), was

reproducible using Google’s gce-tcb-verifier tool, though the underlying firmware

source remains partially opaque.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 8 of 31

This validation process provides strong evidence that baseline measurements can be reliably

precomputed and matched against live quotes, enabling a reproducible trust framework for

Confidential VM deployments.

3.2 Key Hierarchy and Scope

The attestation mechanism for Intel TDX relies on a layered key hierarchy rooted in hardware-fused

secrets. These keys form the foundation for generating secure and verifiable attestation quotes and

enable the derivation of trust across the platform.

At the hardware level, two processor-unique keys are fused during manufacturing:

• Root Provisioning Key (RPK): Maintained by Intel within a hardware security module (HSM).

It acts as the root of trust for platform provisioning operations and is used to derive the

Platform Provisioning ID (PPID).

• Root Seal Key (RSK): A unique per-chip key that is never stored or exported. It enables

sealing of secrets specific to the platform instance.

Both keys are encrypted using the Fuse Encryption Key (FEK), also referred to as the Global Wrapping

Key (GWK), a 128-bit AES key shared across processors of the same microarchitecture. This design

allows Intel to maintain selective control over provisioning operations while ensuring that per-device

keys remain secure.

From these roots, additional attestation-specific keys are derived:

1. Derived Provisioning Key (DPK): Derived from the RPK, used to generate the PPID. The PPID

is encrypted using Intel’s public PPID Encryption Key (EPK) before being sent to the

Provisioning Certification Service (PCS). This encryption step helps prevent direct hardware

identity exposure and mitigates linkability between requests, preserving platform anonymity

while still allowing PCS to retrieve the associated platform’s provisioning data.

2. Attestation Key (AK): Generated inside the TDQE using the CPU’s EGETKEY instruction. This

elliptic-curve key is used to sign the attestation quote and is certified by the PCS using the

Platform Certification Key.

3. Platform Certification Key (PCK): A processor-specific key pair used to sign attestation keys.

The private part is accessible only to Intel, and the public certificate chain is issued by the

PCS.

4. Supporting Keys:

a. Seal Key: Used for securely storing data outside the enclave between restarts.

b. Report Key: Enables local attestation between enclaves on the same platform.

c. EINIT Token Key: Used during enclave creation to validate that the requesting

enclave is allowed to initialize.

d. Platform Provisioning ID: Serves as a database lookup key for the PCS to retrieve

the correct key material and TCB information.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 9 of 31

The AK and its associated certificate chain are included in the final attestation quote. The chain of trust

is rooted at Intel’s Root CA, followed by the PCK CA, and finally the PCK itself. The PCK certifies the

attestation key, enabling external parties to validate both the signature and platform integrity.

The complete flow of key derivation and certificate issuance was validated during this evaluation, and

no deviations were observed from the expected key usage model. The structure of this hierarchy and

the relationships between key derivations and certificate authorities are illustrated in the following

figure.

Figure 2 - Intel TDX Attestation Key Hierarchy

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 10 of 31

3.3 Attestation Sequence

The attestation flow in Intel TDX involves a multi-stage process that begins inside the guest VM and

concludes to a signed quote that can be validated externally using Intel’s certificate infrastructure. This

flow includes report generation, key provisioning, quote signing, and remote verification by the client.

The sequence is as follows:

1. Local Report Generation (Guest VM)

The guest TD uses the SEAMREPORT instruction to generate a report containing key measurements,
such as:

• MRTD: Launch measurement of the TD’s memory image.

• RTMR[0-3]: Runtime extensible measurement registers.

• REPORTDATA: Arbitrary 64-byte payload provided by the guest (typically a nonce or hash).

This report is valid only within the platform and cannot be verified externally.

2. Attestation Key Generation (TDQE)

The TD Quoting Enclave (TDQE), running outside the guest, uses the EGETKEY instruction to
deterministically derive an attestation key from the Root Seal Key. This key is used to sign the quote
that will later be sent to the challenger.

3. Attestation Key Certification (PCE and PCS)

The TDQE constructs an attestation key report and submits it to the Provisioning Certification Enclave
(PCE). The PCE verifies the report and requests a Platform Certification Key (PCK) from Intel’s
Provisioning Certification Service (PCS). The PCK is then used to sign the attestation key.

4. Quote Construction and Signing (TDQE)

The TDQE converts the guest report into an externally verifiable attestation quote and signs it using

the attestation key. The response returned to the client includes:

• The signed quote.

• The signed attestation key.

• The full certificate chain (PCK, PCK CA, Root CA).

5. Quote Verification (Client)

The challenger performs the following checks:

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 11 of 31

• Validates the certificate chain starting from Intel’s Root CA.

• Verifies the signature on the quote.

• Confirms measurement values such as MRSEAM, MRTD, and RTMR[0-3].

• Matches the REPORTDATA field against the expected nonce or session hash.

In some flows, the client may optionally consult Intel Trust Authority for attestation token generation

and verdict delivery (covered in 3.4), but this is not strictly required.

This sequence is visualized in Figure 3, which depicts the interactions between the guest, TDQE, PCE,

PCS, and the remote verifier.

Figure 3 - CPU Attestation Sequence with Intel TDX

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 12 of 31

The robustness of this attestation chain depends on the integrity of the TDX module and Intel’s

certification services. While the overall chain is verifiable using public materials, any failure to validate

measurement registers or misalignment with policy expectations can result in an unverifiable or

untrusted attestation state.

3.4 Intel Tiber Trust Authority Flow

Intel Trust Authority (ITTA) provides an API-based appraisal service that allows clients to validate

attestation quotes produced by Confidential VMs running under Intel TDX. Rather than relying on

manual quote validation and certificate path resolution, the client submits the quote to ITTA and

receives a signed attestation token containing an assessment of the attester’s state and

measurements.

The flow implemented during this evaluation consisted of the following steps:

1. Quote Submission

The attestation quote generated by the TDQE is submitted to the ITTA appraisal endpoint via a POST

request. The payload includes the base64-encoded quote string.

curl --request POST \
 --url https://api.eu.trustauthority.intel.com/appraisal/v1/attest \
 --header 'Accept: application/json' \
 --header 'Content-Type: application/json' \
 --header 'x-api-key: $API_KEY' \
 --data '{ "quote": "BAAC...AAAAAAA=" }'

2. Token Response

ITTA returns a signed attestation token formatted as a JWT. This token embeds key quote fields and

metadata used to evaluate the trustworthiness of the platform.

For example:

{
 "token": "eyJhbGciOiJQU...43lqj4z"
}

3. Embedded Quote Fields

The decoded token contains fields derived from the original quote, including:

• Static Configuration: tdx_mrconfigid, tdx_mrowner, tdx_mrownerconfig

• SEAM & TDX Runtime: tdx_mrseam, tdx_mrsignerseam, tdx_seam_attributes

• Guest Measurements: tdx_mrtd, tdx_report_data, tdx_rtmr0 - tdx_rtmr3

• Security Posture: tdx_is_debuggable, dbgstat

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 13 of 31

• Policy Evaluation: policy_ids_matched, policy_ids_unmatched

• TCB Status: attester_tcb_status (derived from Intel PCS)

These values are used by relying parties to assess whether the attesting VM complies with expected

platform integrity and policy criteria.

4. Client-Side Responsibilities

Although ITTA performs initial validation of the quote and returns a signed result, the client remains

responsible for:

• Verifying the JWT signature on the returned token,

• Validating that embedded fields match challenge-specific values like nonces,

• Interpreting claims such as attester_tcb_status and policy match results in accordance

with their own trust model.

This separation of responsibilities streamlines attestation processing but also introduces an additional

trust anchor, the attestation service itself.

As illustrated in the following figure, all the quote validation is performed by the Trust Authority

service, and the client, beyond trusting the verdict, should still manually verify the signature of the

attestation token and cross-check the embedded values against those included in the submitted quote.

The validation of the attester_tcb_status field in the response depends on Intel PCS. Additional

claims, such as tdx_is_debuggable, dbgstat, policy_ids_matched, and policy_ids_unmatched,

require interpretation against manually defined policies.

Figure 4 - TDX Quote Validation Workflow via Intel Trust Authority

This sequence summarizes the interactions between the attesting VM, ITTA, and the client verifier.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 14 of 31

3.5 ICS Attestation Flow

As an alternative to Intel Trust Authority, attestation can be performed manually by interacting directly

with Intel’s Provisioning Certification Service (PCS). This approach, commonly referred to as the ICS

attestation flow, enables clients to independently validate attestation quotes without relying on

external appraisal services.

This method is based entirely on publicly documented Intel APIs and provides greater transparency

and control over the validation process. The flow consists of the following steps:

1. Quote Parsing (Client)

The attestation quote is generated by the TD Quoting Enclave (TDQE) and sent to the client. Using

libraries such as google/go-tdx-guest, the client parses the quote and extracts key fields:

• Platform measurements: MRSEAM, MRTD, RTMR[0–3]

• Session data: REPORTDATA

• Configuration and debug attributes

2. Collateral Retrieval (Client → PCS)

The client queries Intel PCS to retrieve the necessary collateral for verifying the quote:

• Platform Certificate Chain (PCK, PCK CA, Root CA)

• TCB Info for the target platform

• Certificate Revocation Lists (CRLs)

These assets are made available via Intel’s publicly documented REST APIs.

3. Attestation Key & Certificate Chain Validation

The client verifies that:

• The quote is correctly signed using the attestation key,

• The attestation key is certified by the PCK,

• The full chain terminates at Intel’s Root CA,

• All certificates are valid and not revoked.

4. Measurement Verification

The extracted fields from the quote are evaluated against reference values:

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 15 of 31

• MRTD and RTMR[0–3] compared against known baselines,

• REPORTDATA validated against the expected nonce or challenge,

• Attributes like tdx_is_debuggable and tdx_seam_attributes are checked for

consistency with policy.

While this approach requires more effort than using Intel Trust Authority, it avoids expanding the
Trusted Computing Base (TCB) to include a third-party validation service. This can be advantageous
in scenarios where tighter control over trust decisions is required or where regulatory constraints
exist.

Figure 5 illustrates the interaction between the client, the Confidential VM, and Intel PCS.

Figure 5 - ICS Attestation Flow – Client Validation via Intel PCS

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 16 of 31

3.6 TCB Build Reproducibility

Reproducibility of the Trusted Computing Base (TCB) is an important consideration for attestation

workflows, as it allows the relying party to confirm that platform software components match

expected builds. During this evaluation, build reproducibility was assessed for both the Intel SGX stack

and the Intel TDX module.

3.6.1 Intel SGX
Intel provides a reproducibility framework for SGX enclaves through a dedicated GitHub repository

(intel/linux-sgx). The repository includes a sgx_reproducible branch with deterministic build

instructions and squashed commits aligned with official SDK releases. The build process relies on a

controlled environment using:

• Ubuntu 20.04 as the base system,

• The Nix package manager to enforce consistent toolchain versions,

• Docker to encapsulate the build environment.

This setup enables end-to-end reproducibility of enclave binaries, including:

• Intel SGX SDK and IPP cryptographic libraries,

• Enclave source code and build configuration,

• The TD Quoting Enclave (TDQE), which is critical for Intel TDX quote generation.

As part of the evaluation, the team reproduced the enclave corresponding to MRENCLAVE value

e5a3a7b5d830c2953b98534c6c59a3a34fdc34e933f7f5898f0a85cf08846bca, which maps to the

DCAP version 1.19 (shipped in SGX releases 2.22–2.24). Using the sgx_2.22_reproducible tag, the

binary was successfully rebuilt and matched the known enclave hash. The verification was completed

using the reproducibility_verifier.sh utility. This script allows users to compare an Intel-signed

enclave with a locally built unsigned version, checking that the MRENCLAVE values match. An example

usage is shown below:

openssl genrsa -out dummy_key.pem -3 3072
./reproducibility_verifier.sh $SIGNED_BIN $UNSIGNED_BIN dummy_key.pem
$ENCLAVE_CONFIG

* intel signed AE : /root/linux-
sgx/linux/reproducibility/code_dir/sgx/external/dcap_source/QuoteGeneration/psw/ae
/data/prebuilt/libsgx_tdqe.signed.so
* user unsigned AE : /root/linux-
sgx/linux/reproducibility/code_dir/out/ae/tdqe.so
* user private key : dummy_key.pem
* intel config.xml : /root/linux-
sgx/external/dcap_source/QuoteGeneration/quote_wrapper/tdx_quote/enclave/linux/con
fig.xml

Reproducibility Verification PASSED!

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 17 of 31

This approach is effective for validating the integrity of enclaves used in the attestation process and

provides a reproducible baseline for SGX-enabled components in the Intel TDX stack.

3.6.2 Intel TDX Module
At the time of this evaluation, no equivalent reproducibility framework was available for the Intel TDX

module. Although measurements such as MRSEAM are included in the attestation quote, there is

currently no official documentation or tooling that allows third parties to independently reproduce

the TDX module and validate its measurement hash.

As a result, MRSEAM must be treated as a black-box value unless the TDX module implementation is

made publicly verifiable. This limits the ability of external challengers to confirm the integrity of the

SEAM runtime and increases reliance on the platform provider to supply a known-good value.

This asymmetry between SGX and TDX reproducibility highlights a gap in current transparency and

verifiability tooling for emerging Confidential Computing platforms.

3.7 Deployment Considerations

The deployment model for attestation in this environment is shaped by fundamental architectural

differences between Intel SGX and TDX, particularly with respect to where enclaves are executed and

what can be cryptographically verified in attestation reports.

3.7.1 Execution Model Differences
Intel SGX enclaves cannot run inside TDX-based Confidential VMs. SGX enclaves are user-mode

applications that operate in standard host environments with SGX support. In contrast, Intel TDX relies

on system-level components, specifically, the TDX Module and SEAM, to provide memory isolation and

attestation capabilities within virtualized environments.

In the context of cloud infrastructure, enclaves used for attestation (e.g., TD Quoting Enclaves) are

deployed by the cloud provider and are signed by Intel. These enclaves may run either directly on the

host OS or within a separate SGX-enabled VM, depending on how the platform is configured. From the

perspective of a TDX guest, this distinction is not observable, and SGX’s threat model provides

protection in both scenarios. This means that while TDX guests can trigger attestation, they do not

run their own enclaves.

3.7.2 Verification of Enclave Signers
In SGX-based attestation, the identity of the enclave developer can be cryptographically verified using

the MRSIGNER field. This field represents the SHA-256 hash of the public key used to sign the enclave

and allows relying parties to enforce signer-based policies.

For TDX, the corresponding field (MRSIGNERSEAM) is intended to serve a similar purpose by

representing the signer of the TDX Module (SEAM). However, during this evaluation, and based on

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 18 of 31

Intel-provided guidance, the tdx_mrsignerseam field was observed to be null. Intel has indicated

that this behavior is expected when Intel itself is the signer.

Although both MRSIGNER and MRSIGNERSEAM are defined fields and are supposed to contain valid hash

digests, the null value in tdx_mrsignerseam suggests that this field may be unused, rather than

undefined. This interpretation is supported by Intel documentation and by behavior observed in the

decoded attestation tokens.

Specifically, the validity of tdx_mrsignerseam appears to depend on a field-validity bitmap encoded

in the structure, where the first member determines whether certain fields are to be interpreted as

active. When the corresponding bit is unset, the field may be ignored by downstream verifiers.

As a result, relying parties currently cannot cryptographically verify the signer of the TDX Module in

cloud deployments, even though they can verify the TDX measurements (e.g., MRSEAM) and other

structural fields.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 19 of 31

4 GPU Attestation Evaluation

In addition to CPU-level attestation using Intel TDX, this evaluation explored GPU-level attestation for

NVIDIA H100 devices within the Confidential VM. The aim was to assess whether a complete chain of

trust could be established that includes the GPU runtime, and to validate the correctness and

verifiability of its attestation reports.

NVIDIA provides two main components to support GPU attestation:

1. NVIDIA Remote Attestation Service (NRAS): a cloud-hosted API that receives GPU

measurements and returns a signed attestation token.

2. Confidential Computing Attestation SDK (CCA-SDK): a user-space library that facilitates

local attestation report generation within the guest environment and prepares quotes for

submission to NRAS.

The attestation process is centered on extracting the GPU’s internal measurements and submitting

them to NRAS for validation. The flow includes the following high-level steps:

1. Initializing the GPU device via CUDA/Xid interface,

2. Generating an attestation report locally using the SDK,

3. Sending the report to NRAS for remote appraisal,

4. Receiving a signed attestation token (JWT or similar format) containing claims about the

GPU’s configuration and trustworthiness.

It should also be noted that, at the time of writing, the ITTA composite attestation method (CVM +

GPU) was not functional on GCP due to compatibility issues. As a result, a manual chaining approach

was implemented, combining the attestation sequences of the two components.

This section outlines how the tools were integrated into the evaluation setup, the structure and

content of the attestation report, and the constraints encountered during full-stack validation. The

specific attestation flow, key hierarchies, and runtime conditions are detailed in the following

subsections.

4.1 Implementation Details

The implementation of the attestation process is divided into two parts: a server and a client. The

server exposes two endpoints, one over plaintext for attesting the CPU, and another over HTTPS for

attesting the GPU. The hash of the server’s certificate is embedded in the CPU attestation quote,

ensuring that the client is communicating with the same Intel TDX server that generated the quote.

The attestation process proceeds as follows:

1. The client initiates the process by sending a request to /attest with a locally generated nonce:

a. The server generates an Ed25519 key pair and self-signs a certificate embedding the nonce.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 20 of 31

b. The server generates an attestation quote, including the nonce and a hash of the certificate

in the report_data field.

c. The server returns both the certificate and the attestation quote to the client.

2. The client verifies the quote signature using the Intel SGX Root CA (intel-sgx-root-ca.pem):

a. The client checks the MRSEAM, MRTD, and RTMR register values against known good values.

3. The client verifies that the nonce embedded in the quote matches the original nonce generated

in Step 1.

4. The client verifies that the hash of the certificate embedded in the quote matches the certificate

returned in Step 1(c).

5. The client connects to the GPU attestation server via HTTPS at the /attest_gpu endpoint:

a. The client verifies the TLS certificate of the server matches the one retrieved in Step 1(c).

b. The server generates a new nonce.

c. The server checks whether NVIDIA Confidential Computing is enabled, verifies the GPU is not

in development mode, and confirms the GPU is in a ready state.

d. The server performs GPU attestation.

e. The server returns an Entity Attestation Token (EAT) to the client.

6. The client validates the EAT token against the NVIDIA Remote Attestation Service (NRAS) and

evaluates the claims using a defined policy (NVGPURemotePolicyToken.json).

7. The client uploads the workload through the same server used in Step 5.

Figure 6 – Attestation Flow

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 21 of 31

The entire NVIDIA H100 GPU attestation flow is illustrated below:

Figure 7 - NVIDIA H100 GPU Attestation Flow

4.2 Data Channels and Key Hierarchy

Data movement between the CPU (host) and GPU (device) is handled by copy engines, which are

divided into Host-to-Device (H2D) and Device-to-Host (D2H) channels. Each Logical Copy Engine (LCE)

maps to a Physical Copy Engine (PCE) and is configured for a specific transfer direction. Every channel

is associated with dedicated cryptographic keys, which are derived from a secure key hierarchy rooted

in the SPDM protocol.

There are two types of channels in this architecture:

1) CE-backed channels, used for:

a. CPU-to-GPU and GPU-to-CPU data transfers

b. In-GPU memory movement

c. Page table entry (PTE) copies

d. GPU-to-GPU memory transfers

2) Non-CE channels, used for:

a. CPU-to-SEC2 encrypted data movement

b. The Work Launch Channel (WLC) when Confidential Computing is enabled

c. The Launch Confirmation Indicator Channel (LCIC), which complements WLC

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 22 of 31

The GPU driver maintains a key store consisting of 18 key-spaces: 1 for the GSP (GPU Security

Processor), 1 for the SEC2 microcontroller, and 16 for the individual LCEs.

Each key-space is uniquely identified and mapped to a kernel RM (Resource Manager) channel. Keys

are unidirectional, with separate entries for: Encryption (AES-based), and Authentication (HMAC-

based) operations.

Keys are identified by a key ID, formed by combining the key-space ID with fixed per-key parameters.
Keys are derived using the HKDF (HMAC-based Key Derivation Function). While HKDF allows for
optional pre-shared keys (PSKs), the NVIDIA GPU driver does not use PSKs in this implementation.
As shown in Figure 8, the store provides 112 key slots, broken down as follows:

• 10 slots for GSP-related communication,

• 6 slots for SEC2 operations,

• 96 slots reserved for LCE (CE-backed) channels.

Figure 8 - GPU Key Store Layout

Each slot may hold either an encryption key bundle or an HMAC bundle, which includes a

cryptographic key and a nonce or initialization vector (IV). Slot behavior differs slightly across domains:

• SEC2 and CE slots include monotonic counters in their IVs, incremented on each key update,

• GSP slots do not use counters.

Out of 112 total slots, 44 are actively used in the current configuration:

1. CPU–GSP channels:

• Two D2H/H2D keys for DMA-based transactions,

• Two D2H/H2D keys for locked GSP RPCs,

• Two D2H keys for fault buffer reads (H2D faults are not supported).

2. CPU–SEC2 channels:

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 23 of 31

• Two H2D keys for user-level data encryption and signing,

• Two H2D keys for kernel-level data encryption and signing,

• Two H2D keys for memory scrubber transactions.

3. CPU–CE channels (slots 2 to 9) :

• Each CE channel uses 4 keys (2 for user data, 2 for kernel data),

• Keys are unidirectional (H2D and D2H),

• Each CE channel is assigned a distinct namespace, isolating its key derivation context (see

Figure 9).

Figure 9 - CE Slot Namespaces

Key derivation across these slots follows a consistent hierarchy, starting from a hardware-embedded

root and expanding into multiple branches, including:

• Encryption keys,

• HMAC signing keys,

• Key-wrapping keys used during provisioning and updates.

The full derivation path is shown in Figure 10. Each derived key is tied to a slot index, usage purpose,

and domain-specific counters, ensuring isolation across workloads and device functions.

SEC2 channels play a critical role in launching workloads securely. They handle encrypted data transfers

from untrusted host memory to protected GPU video memory (vidmem), coordinated by the SEC2

microcontroller.

Untrusted memory shared between CPU and GPU is populated with encrypted bundles. These bundles

are moved across SEC2 or CE channels using authenticated encryption (AE) schemes to ensure

confidentiality and integrity during transfer.

While CE channels are architecturally designed to support GPU-to-GPU peer transfers, this feature is

not yet enabled in the current driver and firmware release.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 24 of 31

Figure 10 - Key Derivation Hierarchy

4.3 Deployment Considerations

NVIDIA H100 supports Multi-Instance GPU (MIG) operation, allowing a single GPU to be partitioned

into multiple isolated compute units. This feature is particularly important for enabling multi-tenant

deployment scenarios, where distinct tenants or workloads share the physical GPU while maintaining

strong isolation.

Each MIG partition includes a dedicated portion of GPU compute resources, memory, and bandwidth.

Critically, each partition operates with its own driver context, which implies an independent key store

and cryptographic isolation. This architecture aligns with the zero-trust model used in Confidential

Computing and ensures that derived keys, memory regions, and execution contexts are not shared

between tenants.

This architectural model is illustrated in Figure 11 which shows both single-tenant (full-GPU) and multi-

tenant (MIG-based) configurations.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 25 of 31

In a multi-tenant MIG setup:

• Each tenant VM runs an isolated instance of the NVIDIA driver.

• Each instance maintains a separate key derivation scope.

• No cryptographic material is shared across MIG boundaries.

Figure 11 - H100 Deployment Topologies Using MIG1

4.3.1 Observed Limitations
During testing, MIG support could not be enabled on the H100 instance used in this evaluation. The

following command failed to enable MIG mode:

$ sudo nvidia-smi -i 0 -mig 1
Unable to enable MIG Mode for GPU 00000000:04:00.0: Not Supported
Treating as warning and moving on.
All done.

Subsequent checks confirmed that MIG was not active:

$ nvidia-smi -i 0 --query-gpu=pci.bus_id,mig.mode.current --format=csv
pci.bus_id, mig.mode.current
00000000:04:00.0, [N/A]

The cause of this limitation was not determined during the experiment. It may stem from:

1 Source: NVIDIA H100 Tensor Core GPU Architecture

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 26 of 31

• Cloud provider instance type restrictions,

• Hardware-specific configuration,

• Driver or firmware support limitations within Confidential VMs.

4.3.2 Driver Attestation Security Inefficiency
When initializing the GSP firmware resource manager (RM), the NVIDIA driver extracts the VBIOS

image from ROM and parses it for FWSEC microcode commands. GPU microcontrollers (MCUs) rely on

Falcon microprocessors, which load their firmware from flash (VBIOS) via the kernel driver. This

firmware is stored in an ELF binary, typically located at:

/lib/firmware/nvidia/<NV_VERSION_STRING>/gsp_ga10x.bin

This ELF includes custom sections such as .fwimage, which encapsulates the firmware image intended

for the GPU MCUs.

The firmware is baked into the VM image and therefore becomes part of its overall TCB measurement.

During the attestation process, the GPU signs measurement data that includes

• VBIOS contents,

• Fuses,

• Driver-loaded firmware (including the GSP ELF).

As a result, the GPU attestation report includes cryptographic digests of these components. However,

this process does not provide any guarantees about the integrity of the driver itself. The report

confirms that the firmware the GPU runs was measured, but it does not attest the origin or

trustworthiness of the kernel driver used to load that firmware.

To ensure full trust in the driver, its integrity must be verified through CPU-side attestation

mechanisms, such as IMA (Integrity Measurement Architecture), dm-verity or other root filesystem

validation systems.

Without such validation, there remains a risk that a malicious or compromised driver could tamper

with SPDM session setup or cryptographic operations, undermining the security guarantees of the

confidential GPU environment.

In essence, while the GPU attestation confirms that it is executing known firmware, the responsibility

for validating the kernel-level infrastructure that loads this firmware lies elsewhere, in the CPU

attestation domain.

4.3.3 Secure Non-Volatile Storage
Secure persistent storage is a critical concern in attested Confidential VM deployments. This section

explores two strategies for managing disk encryption in a way that preserves confidentiality, both

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 27 of 31

during execution and after the VM lifecycle ends. These models are illustrated in Figure 12 and Figure

13.

4.3.3.1 Approach-1: External Key Broker

In this model, the decryption key is stored and managed by a trusted external Key Broker Service (KBS).

During VM initialization, the guest presents a valid attestation report to the KBS, which verifies the

platform’s integrity before releasing the key. The guest then uses this key to mount or decrypt its

persistent volume.

The main advantage of this approach is remote revocability: access to storage can be denied at any

time by revoking key release. This is ideal for compliance-sensitive environments, multi-party

workloads, or scenarios requiring fine-grained control over data access.

However, this model introduces a dependency on network connectivity to the KBS. If the broker

becomes unreachable, the guest cannot retrieve its key, which may block workload execution. It also

introduces a larger threat surface if the KBS is exposed over public or semi-trusted networks.

Figure 12 - Approach 1 - External Key Broker

4.3.3.2 Approach-2: In-VM Key Generation with vTPM

An alternative model involves generating the encryption key entirely within the guest, using a vTPM

during provisioning. The key is derived from attested measurements (e.g., PCRs) and sealed to the

guest’s TCB, such that it can only be recovered by the same VM in a verified state.

This model removes the need for external communication entirely: once provisioned, the guest can

decrypt its disk autonomously, assuming the environment remains consistent.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 28 of 31

The downside is a lack of external revocation capability. Once a key is generated and sealed inside the

guest, it cannot be revoked externally, even in cases of guest compromise or policy violation. This

approach favors simplicity and minimal trust surfaces but sacrifices operational control.

Figure 13 - Approach 2 - In-VM Key Generation with vTPM

These two models reflect a trade-off between external control and guest autonomy:

• Use KBS-based provisioning when revocation, auditing, and oversight are top priorities.

• Use vTPM-based provisioning when minimizing external dependencies is more important

than runtime revocability.

In both designs, the effectiveness of storage protection hinges on strong platform attestation, ensuring

keys are only available to guests in a trusted state.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 29 of 31

5 Security Findings

This section summarises the key security observations and implementation inefficiencies identified

during the evaluation. These findings reflect practical issues encountered across attestation flow,

deployment setup, TCB composition, and operational tooling.

5.1 Environment and Runtime Behavior

Installing newer driver versions than those specified in the deployment guide (e.g., NVIDIA 565 vs.

550) causes instability. In this evaluation, version 565 triggered kernel panics in the guest VM,

reinforcing the importance of strict driver version pinning for Confidential GPU deployments.

The build_and_launch_docker.sh script used to generate attestation-related firmware components

reuses the sgx.build.env Docker image if already present. This can result in non-deterministic builds

when the underlying .nix environment differs from earlier runs, potentially compromising build

reproducibility.

5.2 CPU Attestation and TCB Transparency

Confidential VMs under Intel TDX use a Trust Domain Virtual Firmware (TDVF) as the first-stage

bootloader. The MRTD register captures a measurement of this firmware. However, while Intel

provides a design guide for TDVF, implementations may differ between cloud providers.

Google Cloud offers a method for verifying the TDVF binary via a signed UEFI executable, but does not

provide source code. Tools like gce-tcb-verifier can attempt to reproduce the measurement, but

without source transparency, trust in the firmware ultimately relies on blind acceptance or significant

reverse engineering.

5.3 Attestation Integrity and Trust Model Inefficiencies

Intel’s Provisioning Certification Service (PCS) can derive the PCK private key, since quote submission

to PCS is not based on a traditional certificate signing request (CSR). This translates into Intel being

able to re-sign a tampered attestation quote and produce a valid token without disrupting the

certificate chain. While such an event would be malicious and unlikely, it illustrates the asymmetry of

signing authority and its implications on third-party trust anchoring.

Furthermore, in the Intel Tiber Trust Authority (ITTA) model, the token returned by the attestation API

must be manually validated against the original quote. Failing to do so shifts the root-of-trust from

hardware to the attestation API service. This risk is not just theoretical: a non-malicious bug discovered

during testing and reported to Intel demonstrates how operational inconsistencies can undermine

attestation guarantees if not independently validated.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 30 of 31

5.4 GPU Deployment and MIG Support

For any deployment involving the H100 GPU in a Confidential VM, it is critical to verify whether MIG

(Multi-Instance GPU) support is available and enabled in the target cloud environment. In this

evaluation, MIG could not be activated on the GCP test instance.

In environments where MIG is supported, each VM is expected to have its own instance of the NVIDIA

driver and, by extension, a separate key store. This architecture reinforces per-tenant isolation at the

cryptographic level and supports secure multi-tenant GPU sharing.

6 Concluding Remarks

This evaluation demonstrates the feasibility and architectural complexity of extending attestation
across both CPU and GPU boundaries within Confidential VM environments. CPU attestation was
performed using Intel TDX through manual quote parsing and certificate chain validation (Method-1),
as awell as integration with Intel’s Trusted Authority service (Method-2). GPU attestation was
conducted via NVIDIA’s Remote Attestation Service (NRAS), verifying device integrity and runtime
state. The evaluation was carried out under realistic deployment constraints on Google Cloud
Platform, highlighting practical considerations for multi-component trust in cloud-based confidential
workloads.

The evaluation confirms that attestation and isolation guarantees generally operate as intended, but
also highlights underlying security inefficiencies and limitations that surface the need for continued
refinement and ecosystem alignment. These include: opaque firmware supply chains (TDVF
measurement without source transparency), non-revocable secure storage strategies, inconsistent
MIG enablement across cloud offerings, and the implicit expansion of the trust boundary to vendor-
managed APIs. While these issues do not negate the security posture of the underlying technologies,
they reveal areas where design assumptions and operational realities are misaligned.

As confidential computing continues to evolve, robust evaluation of this kind is essential. The
observations here are intended to support platform security architects and infrastructure providers in
closing critical gaps, strengthening isolation models, and advancing toward a more verifiable, zero-
trust foundation for AI infrastructure.

PUBLIC

Cybersecurity Engineering
Confidential Computing

CENSUS - Challenging the Boundaries of CC.docx Page 31 of 31

Acronyms and Abbreviations

Acronym Description

AE Authenticated Encryption
CE Copy Engine

CCA SDK Confidential Computing Attestation Software Development Kit (NVIDIA)

CGI Compute GPU Instance

CRL Certificate Revocation List

CVM Confidential Virtual Machine

D2H Device-to-Host

DCAP Data Center Attestation Primitives
DMAR Direct Memory Access Remapping

DRM Digital Rights Management (in NVIDIA’s kernel driver context)

ELF Executable and Linkable Format

FWSEC Firmware Security Command
GCP Google Cloud Platform

GSP GPU System Processor (NVIDIA firmware environment)

H2D Host-to-Device
HKDF HMAC-based Key Derivation Function

HMAC Hash-based Message Authentication Code

ICS Intel Certificate Service

IMA Integrity Measurement Architecture
KBS Key Broker Service

LCIC Launch Confirmation Indicator Channel

LCE Logical Copy Engine
MIG Multi-Instance GPU

MRSEAM Measurement of the SEAM Module (Intel TDX)

MRTD Measurement of the TD’s Initial State (Intel TDX)
NRAS NVIDIA Remote Attestation Service

PCR Platform Configuration Register (TPM)

PCS Provisioning Certification Service (Intel)

PCE Physical Copy Engine

PSK Pre-Shared Key

RM Resource Manager (NVIDIA Kernel Driver Component)

RTMR Runtime Measurement Register
SEC2 Security Microcontroller on NVIDIA GPUs

SGX Software Guard Extensions (Intel)

SPDM Security Protocol and Data Model

TCB Trusted Computing Base
TDX Trust Domain Extensions (Intel)

TDQE TD Quoting Enclave

TPM Trusted Platform Module
vTPM Virtual Trusted Platform Module

VBIOS Video BIOS (firmware interface for NVIDIA GPUs)

JWT JSON Web Token

	Document History
	Abstract
	1 Introduction and Scope
	2 Reference Environment
	3 CPU Attestation Evaluation
	3.1 Cloud Image Validation
	3.2 Key Hierarchy and Scope
	3.3 Attestation Sequence
	3.4 Intel Tiber Trust Authority Flow
	3.5 ICS Attestation Flow
	3.6 TCB Build Reproducibility
	3.6.1 Intel SGX
	3.6.2 Intel TDX Module

	3.7 Deployment Considerations
	3.7.1 Execution Model Differences
	3.7.2 Verification of Enclave Signers

	4 GPU Attestation Evaluation
	4.1 Implementation Details
	4.2 Data Channels and Key Hierarchy
	4.3 Deployment Considerations
	4.3.1 Observed Limitations
	4.3.2 Driver Attestation Security Inefficiency
	4.3.3 Secure Non-Volatile Storage
	4.3.3.1 Approach-1: External Key Broker
	4.3.3.2 Approach-2: In-VM Key Generation with vTPM

	5 Security Findings
	5.1 Environment and Runtime Behavior
	5.2 CPU Attestation and TCB Transparency
	5.3 Attestation Integrity and Trust Model Inefficiencies
	5.4 GPU Deployment and MIG Support

	6 Concluding Remarks
	Acronyms and Abbreviations

