WINDOWS 10 RS2/RS3 GDI

DATA-ONLY EXPLOITATION TALES

NIKOLAQOS SAMPANIS (@_sméck)
nsampanis@census-labs.com

OFFENSIVECON 2018 BERLIN

WWW.census-labs.com

> WHO AM |

» Computer security researcher at CENSUS S.A.
* Vulnerability research, RE, exploit development
* Focusing on Windows kernel

CENSUS S.A. A
www.census-labs.com

> STRUCTURE

* This presentation is split in two parts.

* InPart 1, | am going to present:

— A currently public Windows kernel bug, that | independently
discovered some time ago.

— A mitigation of GDI object exploitation using pushlocks.
— Two ways to bypass this mitigation.

* |nPart 2, | will present:

— The Win32kfilter system call filtering mechanism (used in the Edge
browser among other places).

— GDI primitives characteristics and their future in RSA4.

CENSUS S.A. A
www.census-labs.com

> INTRODUCTION

In early July 2017 | was writing an exploit for CVE-2016-3309,
a Windows kernel bug.

The vulnerability was documented in a blogpost, without PoC
code, by Nikolas Economou.

| realized that the vulnerability was re-introduced in
Windows 10 RS2

— Itis currently patched again (in RS3, Sep. 2017).

Since the bug has been explained in depth by a couple of
researchers | will explain it very briefly.

CENSUS S.A. A
www.census-labs.com

> DISCLAIMER

* All code snippets in this presentation are the result of
reverse engineering.

* Except, of course, those that describe implemented
examples.

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 1)

The Bug

GDI Handle Manager
The Palette primitive
The mitigation

The deadlock technique
Fixing the deadlock problem
Delayed free list technique

CENSUS S.A.
www.census-labs.com

> CVE-2016-3309

A GDI PATH object is used to store coordinates for
drawing.

We can create a PATH object by calling

NtGdiBeginPath.

We can store coordinates with functions like
MoveToEx, LineTo, PolylineTo, PolyPolyline,
PolyBezier.

BOOL MoveToEx(HDC hdc, int X, intY):

CENSUS S.A. A
www.census-labs.com

> CVE-2016-3309

* The data structure that PATH uses to store coordinates is POINTFIX.

POINTFIX {
LONG x;
LONG vy;

» Multiple coordinates are stored in PATHRECORD

PATHRECORD {
struct PATHRECORD *pprnext;
struct PATHRECORD *pprprev;
POINTFIX aptfx[2];

};

CENSUS S.A.
www.census-labs.com

> CVE-2016-3309

 The number of how many coordinates we have
stored is saved in cCurves.

PATH : OBJECT {
PATHRECORD *pprfirst;
PATHRECORD *pprlast;
ULONG cCurves;

CENSUS S.A. A
www.census-labs.com

> CVE-2016-3309

* Region is a similar object that stores coordinates.

* Coordinates in Region are stored in the EDGE data
structure.

_EDGE {
PVOID pNext;
INT iScanslLeft;
INT X;
INT Y;
INT iErrorTerm;
INT iErrorAdjustUp;
INT iErrorAdjustDown;
INT iXWhole;
INT iXDirection;
INT iWindingDirection;
*PEDGE ;

CENSUS S.A.
www.census-labs.com

> PATH TO REGION

* The Win32k system call NtGdiPathToRegion converts
a PATH object to REGION object.

 Based on cCurves, the number of edges is allocated.

CENSUS S.A. A
www.census-labs.com

> PATH TO REGION

RGNMEMOB] : : vCreate (RGNMEMOB] * EPATHOB] *po)

EDGE *pFreeEdges;
count;

count = po.cCurves;

pFreeEdges = (PEDGE)PALLOCNOZ((EDGE) * (count + 1),

AddeEdgeToGET (pFreekdge, ppfxEdgeStart, ppfxEdgeEnd);

Win32FreePool (pFreekdges);

CENSUS S.A.
www.census-labs.com

> HEAP OVERFLOW

* The heap overflow takes place in AddEdgeToGET.

* | wrote the PoC for RS2 as explained, and
| got a bugcheck (kernel panic).

* The reason was a mitigation added in GDI Handle
Manager at RS1.

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 1)

The Bug

GDI Handle Manager
The Palette primitive
The mitigation

The deadlock technique
Fixing the deadlock
Delayed free list technique

CENSUS S.A.
www.census-labs.com

> GDI HANDLE MANAGER

* Stores GDI objects in the handle table and returns a
handle.

* Translates a handle to kernel object address.
* Consists of a couple of data structures.

CENSUS S.A. A
www.census-labs.com

> GDI HANDLE MANAGER

* The core data structure GdiHandleManager is allocated in
GdiHandleManager::Create.

GdiHandleManager {
DWORD maxHmgr;
DWORD curHandleCount;
DWORD maxHandleCount;
DWORD unknown3;
GdiHandleEntryDirectory *dir;
_ QWORD unknown4;

CENSUS S.A. A
www.census-labs.com

> GDI HANDLE MANAGER DIRECTORY

» The member dir also gets allocated by calling
GdiHandleEntryDirectory::Create.

GdiHandleEntryDirectory {
BYTE busy flag;
BYTE unknown;
WORD tableCount;
DWORD unknownl;
GdiHandleEntryTable *tables[256];
DWORD maxHandleCount;

CENSUS S.A.
www.census-labs.com

> GDI HANDLE MANAGER TABLE

* The member tables is allocated at GdiHandleEntryTable::_Create.

GdiHandleEntryTable {
GDICELL64 *sharedMem CellData;
DWORD maxHandleCount;
DWORD shareMemIndex;
DWORD curHandleCount;
DWORD nextHandle;
EntryDatalLookupTable *gdilLookupTable;

CENSUS S.A. A
www.census-labs.com

> SHARED MEMORY CELL DATA

 For each GDI object, a GDICELL64 is created, which are the metadata of the object.

{

PVOID64 nextHandle;

USHORT wProcessId;

USHORT wCount;

WORD handle;

BYTE wType;

BYTE wType2;

PVOID64 pUserAddress;
} GDICELL64;

sharedMem_CellData is an array of GDICELL64 entries.
sharedMem_CellData is shared memory between win32k and GUI processes.
Every GUI process stores a copy of sharedMem_CellData in

PEB->GdiSharedHandleTable.

CENSUS S.A. A
www.census-labs.com

> GDI HANDLE MANAGER ENTRYDATALOOKUPTABLE

The member gdiLookupTable is allocated at
GdiHandleEntryTable::EntryDatalLookupTable::Create

EntryDatalookupTable {
LookupEntryAddress *lookupTableData;
DWORD maxHandleCount;
DWORD unknownl;
LookupEntryAddress *lookupEntryAddr[©x100];

Each LookupEntryAddress pointer in EntryDataLookupTable,
when allocated, will contain 0x100 entries of LOOKUP_ENTRY.

LookupEntryAddress {
LOOKUP_ENTRY entry[0x100];

CENSUS S.A.
www.census-labs.com

> THE ENTRY

* Each entry contains the kernel address of the allocated
object GdiObjectAddress and a push lock EX_PUSH_LOCK.

LOOKUP_ENTRY {
EX_PUSH_LOCK lock;
PVOID64 GdiObjectAddress;

CENSUS S.A. A
www.census-labs.com

> GDI MANAGER STRUCTURES GRAPH

GDI HANDLE
MANAGER

Gdi Handle
EntryDirectory

GdiHandleEntryDirectory

GdiHandleEntry Table[0]

GdiHandleEntry Table[1]

GdiHandleEntryTable

GdiHandleEntry Table[2]

SharedMem_CellData

EntryDatalookupTableg

GdiHandl2EntryTable[255]

EntryDataLookupTable

LookupEniry Address[0]

LookupEniry Address[1]
LookupEniry Address[2]

SharediMem_CellDats

GDICELLG4
GDICELLG4
GDICELLG4

LookupEntryAddress

LOOKUP_ENTRY[0]

EX_PUSH_LOCK

LookupEntry Address[255]

CENSUS S.A.
www.census-labs.com

GdiObjectAddress

LOOKUP_ENTRY[1] |

EX_PUSH_LOCK

GdiObjectAddress

LOOKUP_ENTRY[255)

EX_PUSH_LOCK

GdiObjectAddress

> OBJECT CREATION

 Every NtGdiCreate* allocates an object and returns a handle.
 The last 3 bytes of handle identify the objects type and the
index of the entry in the handle table.

ENTRY LOOKUP ENTRY
DATALOOKUP ADDRESS
INDEX INDEX

We can think of these structures as a page table, where each
new object lives in a LOOKUP_ENTRY.

CENSUS S.A. A
www.census-labs.com

> THE GDI OBJECT

 Each GDI object starts with an object header.

{
ULONG64 hHmgr;

ULONG32 ulShareCount;
WORD cExclusivelock;
WORD BaseFlags;
ULONG64 Tid;

} BASEOBJECT64;

* Tid contains KTHREAD data structure, that we can leak by reading the
heap.
* hHmgr contains the handle of the object.

CENSUS S.A. A
www.census-labs.com

> INSERT OBJECT

HmglnsertObjectinternal inserts a GDI object in the handle table and returns the handle.

HOB] _ *HmgInsertObjectInternal@<rax>(*object, inté4 flags, int64 type)

hHmgr = lookupEntryIndex | (EntryDatalookupTableIndex << 8) | (type << 16);
object->Tid = KeGetCurrentThread();

object->cExclusivelock = flags & 1;

object-»>ulShareCount = (flags >> 1) & 1;

object->hHmgr = hHmgr;

LookupEntry = gdilookupTable->LookupTableData[EntryDatalookupTableIndex][lookupEntryIndex];
LookupEntry->lock = NULL;

-2

LookupEntry->GdiObjectAddress = object;

hHmgr ;

CENSUS S.A.
www.census-labs.com

> STRUCTURE (PART 1)

The Bug

GDI Handle Manager

The Palette primitive

The mitigation

The deadlock technique
Fixing the deadlock problem
Delayed free list technique

CENSUS S.A. A
www.census-labs.com

> WINDOWS RS3 PRIMITIVE

The palette GDI object.
Abused for read/write primitives in RS3.
Used in my exploits to obtain system token.

Presented by Saif El-Sherei (0x5A1F) at DEFCON
2017.

CENSUS S.A. A
www.census-labs.com

> PALETTE

 An entry of Palette is defined in the structure PALETTEENTRY.

tagPALETTEENTRY {
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;
} PALETTEENTRY;

* In order to create a palette, we should first allocate a LOGPALETTE
structure, which defines the version and the number of entries.
tagLOGPALETTE {
WORD palVersion;

WORD palNumEntries;
PALETTEENTRY palPalEntry[1];

} LOGPALETTE;
CENSUS S.A. A
www.census-labs.com

> CREATE PALETTE

HPALETTE hPal;
LOGPALETTE *pal:

pal = malloc((¥*pal) + @x1e (PALETTEENTRY));
pal->palVersion = 9x300;

pal->palNumEntries = 0x10;

hPal = CreatePalette(pal);

CENSUS S.A. A
www.census-labs.com

> PALETTE IN MEMORY

BASEOBJECT64 {
ULONG64 hHmgr;
ULONG32 ulShareCount;
WORD cExclusivelock;
WORD baseFlags;
ULONGB4 tid;

)75

PALETTE {

BASEOBJECT64 baseObject;
FLONG fPal;
ULONG cEntries;
ULONG palUnique;
ULONG pad;
HANDLE hdcHead;
HANDLE hSelected;
ULONG cRefhPal;
ULONG cRefRegular;
ULONG64 ptransFore;
ULONG64 ptransCurrent;
ULONG64 ptransOld;
ULONG64 pad5;
ULONG64 padé6;
ULONG6E4 pad7;
ULONG *ppalColor;

PALETTE *ppalThis;
ULONG *palColorTable;

)75

CENSUS S.A.
www.census-labs.com

> READ ENTRIES

PALETTEENTRY entry[5];

GetPaletteEntries(hPal, @, 5, &entry);

CENSUS S.A. A
www.census-labs.com

> SET ENTRIES

()

PALETTEENTRY entry;
entry.peRed = 0x41;
entry.peGreen = 0x42;
entry.peBlue = 0x43;
entry.peFlags = 0x44;

SetPaletteEntries(hPal, 0, 1, &entry);

CENSUS S.A. A
www.census-labs.com

> READ/WRITE PRIMITIVES

» We should first spray with palette objects in order to arrange them
back to back in the heap.

 QOverwrite ppalColor pointer of paletteA to point to address
&ppalColor of paletteB.

palA->ppalColor = &palB->ppalColor;

PALETTE A PALETTE B

Hmgr Hmgr
TID Entries TID Entries
cEntries cEntries

palColor palColor

i}

CENSUS S.A. A
www.census-labs.com

> WRITE DATA

« We call SetPaletteEntries with handle of paletteA to set
paletteB->ppalColor. (1)

 Then we write any data to that address by calling SetPalette
Entries with handle of paletteB. (2)

(PVOID address, BYTE *data, ULONG size)
SetPaletteEntries(hMgr, ©, 2, (PALETTEENTRY *)&address);

SetPaletteEntries(hWrk, 9, size / (PALETTEENTRY), data);

}
CENSUS S.A. A
www.census-labs.com

> READ DATA

« We call SetPaletteEntries with handle of paletteA to set
paletteB->ppalColor. (1)

 Then we read data from that address by calling
GetPaletteEntries with handle of paletteB. (2)

(PVOID address, BYTE *data, ULONG size)
SetPaletteEntries(hMgr, ©, 2, (PALETTEENTRY *)&address);

GetPaletteEntries(hWrk, 0, size / (PALETTEENTRY), data);

}
CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 1)

The Bug

GDI Handle Manager

The Palette primitive

The mitigation

The deadlock technique
Fixing the deadlock problem
Delayed free list technique

CENSUS S.A. A
www.census-labs.com

> REFERENCE COUNTING

Before a GDI object is used, a reference takes place
(increasing the reference count).

Afterwards a dereference takes place (decreasing the count).

GreSetPaletteEntries calls HmgShareLockCheck to
find the entry and reference it.

ulSetEntries will write it (use it).
DEC_SHARE _REF CNT will dereference it.

CENSUS S.A. A
www.census-labs.com

> REFERENCE COUNTING

HPALETTE (HPALETTE hpal,

{
type = 8;

paletteObj = HmgShareLockCheck(hpal, type);

XEPALOBIJ: :ulSetEntries(paletteObj, Start, Entries, pe);
(paletteObj) {

DEC_SHARE_REF_CNT(paletteObj);
}

Entries,

CENSUS S.A.

www.census-labs.com

tagPALETTEENTRY *pe)

> REFERENCE COUNTING

HmgShareLockCheck finds the entry LOOKUP_ENTRY
by argument handle (1).

Acquires the lock LOOKUP_ENTRY->lock(2) to make the reference
thread safe.

References the object (3).

Instead of releasing the lock, finds the entry again using the handle
from the object header object->hHmgr (4).

Release the lock LOOKUP_ENTRY->lock (5).

CENSUS S.A. A
www.census-labs.com

> REFERENCE COUNTING

BASEOBJECT6E4 * (handle,
{
search (1)
EntryDatalookupTableIndex = (handle >»> 8) & Oxff;
lookupEntryIndex = handle & exff;
LookupEntry = gdilLookupTable->lookupTableData[EntryDatalLookupTableIndex][lookupEntryIndex];
acquire (2)

ExAcquirePushLockExclusiveEx (&LookupEntry->lock, 8);

object = LookupEntry->object;
++object->ulShareCount;

= object->hHmgr;
EntryDataLookupTableIndex = (hMgr >> 8) & oxff;
lookupEntryIndex = hMgr & oxff;
LookupEntry = gdilLookupTable->lookupTableData[EntryDataLookupTableIndex][lookupEntryIndex];

ExReleasePushLockExclusiveEx(&LookupEntry->lock, 0);

LookupEntry;

CENSUS S.A.
www.census-labs.com

> MITIGATION

In case of a heap overflow, the argument handle
will be different from object->hHmgr in the heap.

We will release a non acquired lock, decrementing

LOOKUP_ENTRY->lock by 1(0xffffffff).
ulSetEntries will perform the write.

Later in DEC_SHARE_REF_CNT, we will try to
acquire a lock with value (0xffffffff) and deadlock

there.

CENSUS S.A. A
www.census-labs.com

> MITIGATION

_inte4 _ fastcall (BASEOBJECT64 *object)

{
handle = object->hHmgr

/* search */
EntryDatalookupTableIndex = (handle >> 8) & oxff;
lookupEntryIndex = handle & @xff;

LookupEntry = gdilookupTable->lookupTableData[EntryDatalLookupTableIndex][lookupEntryIndex];

* acquire (1)

ExAcquirePushLockExclusiveEx(&LookupEntry->lock, 0);

S B B
d: erTerence

--object->ulShareCount;

release *

ExReleasePushLockExclusiveEx(&LookupEntry->lock, 0);

CENSUS S.A.
www.census-labs.com

> MITIGATION

* So far we used to spray with a primitive and allocate the
vulnerable buffer to one of the holes.

PALETTE 1 PALETTE 2 PALETTE 3

Hmgr Hmgr Hmgr
TID Entries FREE BUFFER TID Entries FREE BUFFER TID Entries
cEntries cEntries cEntries
palColor palColor palColor

A A

A

CENSUS S.A. A
www.census-labs.com

> MITIGATION

PALETTE 1 PALETTE 2 PALETTE 3

Hmgr Hmgr(Corrupted) Hmgr
7D Enties | \/LNERABLE BUFFER | _ID(Ovenwriten) | Eniries FREE BUFFER 7D
cEntries cEntries(Overwritten) cEntries
palColor palColor palColor

A A

* With this mitigation we are going to corrupt the hmgr of PALETTE 2.

 As aresult, when we call setPaletteEntries to use our primitive (Palette
2), our thread is going to deadlock.

CENSUS S.A. A
www.census-labs.com

> FINAL DEATH

| tried a couple of approaches.

Found a technique that worked in RS2/RS3, that | will
explain in detail later.

A couple of weeks had passed and the bug was
reported by @bitshifter123 to ZDlI.

In October a blogpost by @bitshifter123, introduced a
technique BUT with a deadlock problem.

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 1)

The Bug

GDI Handle Manager

The Palette primitive

The mitigation

The deadlock technique
Fixing the deadlock problem
Delayed free list technique

CENSUS S.A. A
www.census-labs.com

> THE DEADLOCK TECHNIQUE

* GreSetPaletteEntries will execute
XEPALOBJ::ulSetEntries and then might deadlock.
* We have one arbitrary write.

« We can use that write to corrupt the next object in
the heap.

CENSUS S.A. A
www.census-labs.com

> THE DEADLOCK TECHNIQUE

 From another thread we can use the next object as a
read/write primitive.

* The process will not be able to terminate since it has
a deadlocked thread.

CENSUS S.A. A
www.census-labs.com

> THE DEADLOCK TECHNIQUE GRAPH

PALETTE 1 PALETTE 2 PALETTE 3

Hmgr Hmgr(Corrupted) Hmgr(valid handle)

TID Entries TID(Overwritten) Entries TID(Overwritten)
cEntries VULNERABLE BUFFER cEntries(Overwritten) cEntries(Overwritten)

palColor palColor palColor

I) I

By calling the SetPaletteEntries we use our one arbitrary write, to
corrupt palette 3 with a valid hmgr.

 Qur thread is going to deadlock, but we can use Palette 3 from another
thread as a read/write primitive.

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 1)

The Bug

GDI Handle Manager
The Palette primitive
The mitigation

The deadlock technique
Fixing the deadlock problem
Delayed free list technique

CENSUS S.A. A
www.census-labs.com

> PUSHLOC

The pushlock
at first sight, |

KTHREAD has
address of an

ExAcquirePus
pushlock in K1

K

mechanism used by the GdiHandleManager,
ooks like a spinlock.

an array of LockEntries, at each entry the
acquired lock is stored.

nLockExclusiveEx will store the address of
'HREAD->LockEntries (1) and will set the

first bit of pus
In case that th

nlock (2).
e first bit is already set (acquired),

ExfAcquirePushLockExclusiveEx will be called (3).

CENSUS S.A. A
www.census-labs.com

> ACQUIRE PUSHLOCK

(_EX_PUSH LOCK *pushLock, ULONG PTR flags)

/* set lockEntry (1) */

index = thread->AbEntrySummary;

lockEntry = &thread->LockEntries[index];
lockEntry->LockState.Sessionld = v7;

lockEntry->LockState.LockState = (pushLock & Ox7FFFFFFFFFFFFFFCi64);

/* set 1st bit (2) */
(_interlockedbittestandset64(pushLock, 0i64))
ExfAcquirePushLockExclusiveEx(pushLock, lockEntry, pushLock); //(3)
lockEntry->AcquiredByte |= 1u;

CENSUS S.A. A
www.census-labs.com

> ALREADY ACQUIRED

 |n DEC_SHARE_REF_CNT we tried to acquire a
pushlock with value Oxffffffff.

o Oxffffffff seems like an acquired pushlock.
 ExfAcquirePushLockExclusiveEx will be called.

CENSUS S.A. A
www.census-labs.com

> WAITBLOCK

 ExfAcquirePushLockExclusiveEx creates a waitblock.

 The waitblock is a data structure, that keeps the
waiters linked until the pushlock is released.

_EX_PUSH_LOCK_WAIT BLOCK {
KEVENT WakeEvent;

PVOID Next;

PVOID Last;

PVOID Previous;

LONG ShareCount;

LONG Flags;

CENSUS S.A.
www.census-labs.com

> WAITBLOCK

 Depending on whether we are the first thread that will
wait for the pushlock, waitblock will be set accordingly.

* |In case we are the first waiter, waitBlock.Last will be set.

e QOtherwise waitBlock.Next will be used to create a linked list
between waitblocks.

CENSUS S.A. A
www.census-labs.com

> WAITBLOCK

* The 2" hit of pushlockValue will be set (Oxffffffff).
 The waitblock will be set as there are multiple waiters.

— The address of this waitblock, will be stored in the pushlock.

 KeWaitForSingleObject will be called, blocking until the
pushlock is released.

CENSUS S.A. A
www.census-labs.com

> WAITBLOCK

__int64

{
_EX_PUSH_LOCK WAIT BLOCK waitBlock;

pushlockValue = pushlLock->Ptr;
waitBlock.Flags = 3;
waitBlock.Previous = 9;

(pushlockValue & 2) {
waitBlock.Last = @i64;
waitBlock.ShareCount = @xFFFFFFFF;

waitBlock.Next = (pushlockValue & OxFFFFFFFFFFFFFFF@);
waitBlockPtr = &waitBlock | pushlockValue & 28 | 7;

}

waitBlock.Last = &waitBlock;

waitBlock.ShareCount = pushlockValue >> 4;

waitBlockPtr = &waitBlock | 3;

(!'(pushlockValue >> 4))
waitBlock.ShareCount = 0x FFFFE;

¥
_InterlockedCompareExchange (pushLock, waitBlockPtr, pushlockValue);
waitBlock.WakeEvent.Header.WaitlistHead.Blink = &waitBlock.WakeEvent.Header.WaitlistHead;
waitBlock.WakeEvent.Header . WaitlistHead.Flink = &waitBlock.WakeEvent.Header.WaitlistHead;
waitBlock.WakeEvent.Header.Size = 6;
waitBlock.WakeEvent.Header.SignalState = 8;
KeWaitForSingleObject(&waitBlock->WakeEvent, WrPushlLock, 0, 0, 0i64);

CENSUS S.A.
www.census-labs.com

> LOCK ENTRIES

e The deadlocked thread has 2 KTHREAD->LockEntries set.

o KTHREAD->LockEntries[0], contains the address of a
valid Pushlock that we acquired in HmgShareLockCheck.
— Then we released a non acquired lock.
— Tried to acquire it in DEC_SHARE_REF_CNT.

 KTHREAD->LockEntries[1], that contains the address of a
Pushlock that has a waitblock as value.

CENSUS S.A. A
www.census-labs.com

> LOCK ENTRIES

PUSHLOCK

pushlock of corrupted
palette
value ==

KTHREAD

LockEntries[0] WAITBLOCK

LockEntries[1]

Set for multiple
Waiters

PUSHLOCK

pushlock of random
LOOKUP_Entry
value == &Waitblock

CENSUS S.A. A
www.census-labs.com

> WAKING UP

 Qur plan is to set the waitblock (as there is only one
waiter) and release it.

* That should wake up the thread.
o Let’s study how the release of a pushlock works.

CENSUS S.A. A
www.census-labs.com

> RELEASE PUSHLOCK

ExReleasePushLockExclusiveEx will decrement the pushlock
by 1(1).

If bit 2 is set, it will call ExfTryToWakePushLock to

wake up the waiter in the waitblock(2).

Then will loop through KTHREAD->LockEntries to find
the one that contains the pushlock (3).

If the entry wasn't found and the entries aren't exhausted
the thread will bugcheck (4).

CENSUS S.A. A
www.census-labs.com

> RELEASE PUSHLOCK

__fastcall (_EX_PUSH_LOCK

((_InterlockedExchangeAddé64(pushLock, -1) & 6) == 2)
ExfTryToWakePushLock(pushLock);

pushLock2 = pushLock & @x7FF FFFFFFCi64;

(i =09; i< 6; i++) {
lockEntry = &thread->LockEntries[index];
(lockEntry->AcquiredByte & 1) {
(lockEntry->LockState.LockState & @x7FFFFF FFFCi64) == pushlLock2) {
lockEntry->AcquiredByte &= ©xFEu;
(lockEntry->LockState.LockState)

»

(!lockEntry) {
ThreadFlags = thread->ThreadFlags;

(! bittest(&ThreadFlags, ©xl1l@u))
KeBugCheckEx(v1®e, v8, pushLock2, v5);

CENSUS S.A.
www.census-labs.com

> WAKING UP STEPS

 All read/write operations in the algorithm are implemented with the palette
primitive described earlier.

1) Read the heap to find BASEOBJECT64->Tid,
which is the address of deadlocked thread KTHREAD.

2) Read KTHREAD>LockEntries[1], to get the
address of the pushlock that contains the waitblock.

3) Clear the flags in waitblock and set the flags for one waiter.

4) Set waitBlock.Last equal to waitblock address and

waitBlock.Next equal to zero.
CENSUS S.A. A
www.census-labs.com

> WAKING UP STEPS

5) Read KTHREAD->LockEntries[0], to get the address of valid
objects pushlock and set the value to zero.

6) set the KTHREAD>AutoBoostEntriesExhausted flag, to our thread in
order to release a pushlock we didn't acquire from that thread.

7) Call SetPaletteEntries with the handle of the object that we
corrupted. That will call HmgShareLockCheck and wake up the waiter.

CENSUS S.A. A
www.census-labs.com

> WAKE UP!

BASEOBJECTe4 * (handle,
{
search (1)
EntryDatalLookupTableIndex = (handle >> 8) & Oxff;
lookupEntryIndex = handle & oxff;
LookupEntry = gdilLookupTable->lookupTableData[EntryDatalLookupTableIndex][lookupEntryIndex];

acquire |

ExAcquirePushLockExclusiveEx(&LookupEntry->lock, ©);

object = LookupEntry->object;
++object->ulShareCount;

search again (4
hMgr = object->hHmgr;

EntryDatalLookupTableIndex = (hMgr >> 8) & oxff;
lookupEntryIndex = hMgr & Oxff;

LookupEntry = gdilLookupTable->lookupTableData[EntryDatalLookupTableIndex][lookupEntryIndex];

LookupEntry;

CENSUS S.A.
www.census-labs.com

> DEMO

* The bug was patched in RS3.

* | wrote a driver that imitates the bug, to demonstrate the
exploit in RS3.

* The goal of the demo is to demonstrate the mitigation
bypass technique.

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 1)

The Bug

GDI Handle Manager
The Palette primitive
The mitigation

The deadlock technique
Fixing the deadlock problem
Delayed free list technique

CENSUS S.A.
www.census-labs.com

> ANOTHER TECHNIQUE

Back when | was working on a way to bypass the mitigation,
the deadlock technique wasn'’t an option.

| thought, since all the handles are known, | should try to
free a GDI object and allocate the vulnerable buffer to the
same space.

In this way, | will be able to overwrite the next palette object
with a valid handle.

Of course that didn't work, because of the delayed free list.

CENSUS S.A. A
www.census-labs.com

> DELAYED FREE LIST

* ExFreePoolWithTag is called to free a heap block.

 The block might not get freed directly, instead it is going to
get stored in the delayed free list.

* The list can store up to 32 blocks, after that it will free them
all and start storing again.

CENSUS S.A. A
www.census-labs.com

> EXFREEPOOLWITHTAG

(PVOID P, ULONG TagToFree)

L=

(PoolDesc->PendingFreeDepth >= 32)
ExDeferredFreePool (PoolDesc);

{
Oldvalue = &PoolDesc->PendingFrees;

((PSINGLE_LIST_ENTRY)P)->Next = &PoolDesc->PendingFrees;
} (InterlockedCompareExchangePointer,
&PoolDesc->PendingFrees,
P,
Oldvalue) != 0ldvalue);

InterlockedIncrement (&PoolDesc->PendingFreeDepth);

}

CENSUS S.A.
www.census-labs.com

> THE TECHNIQUE

* Suppose that we need to overflow a buffer of size 0x420.
* We should allocate 32 palettes of different size.
* Spray with palettes of 0x420 size.

CENSUS S.A. A
www.census-labs.com

> THE TECHNIQUE

Free one of the 0x420 size palettes.
Free the 32 palettes of different size.
Trigger the vulnerable ioctl, that will allocate a 0x420 buffer.

That buffer should be claimed on the same heap block of a
0x420 palette we just freed.

CENSUS S.A. A
www.census-labs.com

> THE TECHNIQUE

pal3 = (LOGPALETTE *)malloc((*pal3) + ©exce * (PALETTEENTRY));
pal3->palVersion = @€x360;
pal3->palNumEntries = @xco;

(i =0; 1< 32; i ++)

hPad[i] = CreatePalette(pal3);

pal2 = (LOGPALETTE *)malloc((*pal2) + exe@ * (PALETTEENTRY));
pal2->palVersion = ©x368;
pal2->palNumEntries = 8xe@;

(i =8; 1< 4096; i++)
hPal2[i] = CreatePalette(pal2);
Buffer[1ee@] = hPal2[1513];

DeleteObject(hPal2[1512]);

(1 =0; 1 < 32; i++)
DeleteObject(hPad[i]);

DeviceIoControl(hDevice, VULN_IOCTL, buffer, (buffer), output, 4895, &bytesReturned, NULL);

CENSUS S.A.
www.census-labs.com

> THE TECHNIQUE

* Spray With 0x420 palettes, without holes.

PALETTE 1 PALETTE 2 PALETTE 3 PALETTE 4

Hmgr Hmar Hmgr Hmgr
TID Entries TID TID Entries TID
cEntries cEntries cEntries cEntries
palColor palColor palColor palColor

1]

CENSUS S.A.
www.census-labs.com

> THE TECHNIQUE

» We free one 0x420 buffer and 32 palettes of different size.

PALETTE 1

PALETTE 3

PALETTE 4

Hmgr
TID
cEntries
palColor

Entries

FREE SPACE

Hmgr
TID
cEntries
palColor

Entries

Hmgr
TID
cEntries
palColor

Entries

f

f

CENSUS S.A.

www.census-labs.com

f

©

> THE TECHNIQUE

 We call the vulnerable ioctl/system call that will allocate the
vulnerable buffer in the same memory.

PALETTE 1

PALETTE 3

PALETTE 4

Hmgr
TID
cEntries
palColor

Entries

VULNERABLE BUFFER

Hmgr
TID
cEntries
palColor

Hmgr
TID
cEntries
palColor

Entries

f

CENSUS S.A.

www.census-labs.com

f

©

> DEMO

* For this demo | will reuse my vulnerable driver.

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 2)

Win32kFilter

Filter script

Primitive Characteristics
Vanishing of GDI objects

Type Isolation

Palette in Type Isolation

Future of GDI Object Exploitation

CENSUS S.A. A
www.census-labs.com

> WIN32K FILTER

Privilege escalation exploits are on the rise, because of sandboxes.

The Win32k component, a provider of system calls, has introduced
win32kfilter, a filtering mechanism that cuts down the number of
system calls available to sandboxed processes (thus reducing the
kernel's attack surface).

Our read/write primitive should be reachable from win32kfilter.

To understand win32kfilter we should take a deeper look in the system
call handler.

CENSUS S.A. A
www.census-labs.com

> SYSTEM CALL HANDLER

 The syscall handler is initialized at boot in InitializeBootStructures
__writemsr(0xC0000082, KiSystemCall64);

* When a syscall instruction is executed from a 64-bit program
KiSystemCallé4 will be called.

CENSUS S.A. A
www.census-labs.com

> SERVICE TABLE

 KiSystemCallé64 gets serviceTable from
ServiceDescriptorTable.

* Later on, from serviceTable it gets the offset of the system
call, based on the system call number.

* Then adding the offset to the serviceTable gives us the
address of the system call.

CENSUS S.A. A
www.census-labs.com

> SERVICE TABLE

 The table for NT system calls is
KiServiceTable in KeServiceDescriptorTable (1).
* For a GUl process it's W32pServiceTable in
KeServiceDescriptorTableShadow (2).

 For arestricted GUI process it's W32pServiceTableFilter
In KeServiceDescriptorTableFilter (3).

CENSUS S.A. A
www.census-labs.com

> KISYSTEMCALL64

syscallNum &= @xFFFuj;

ServiceTableIndex = (()syscallNum >> 7) & ©x28;

ServiceDescriptorTable = &KeServiceDescriptorTable;

v24 = &KeServiceDescriptorTableShadow;
(currentThread->GuiThread) {

(currentThread->RestrictedGuiThread)
v24 = &KeServiceDescriptorTableFilter;
ServiceDescriptorTable = v24;

(syscallNum < (ServiceDescriptorTable + ServiceTableIndex)->maxSyscallNumber)) {
ServiceTable = *(_QWORD *)(ServiceDescriptorTable + ServiceTableIndex);

offset = *(*)(ServiceTable + 4 * syscallNum);
syscallAddr = ((offset >> 4) + ServiceTable);
result = syscallAddr(firstArg, secondArg, thirdArg, fourthArg);

CENSUS S.A.
www.census-labs.com

> NTGDIGETREGIONDATA

 Suppose that we want to call NtGdiGetRegionData from an
Edge sandboxed process.

* KiSystemCallé4 will read the offset from
W32pServiceTableFilter.

* Then will add the offset to the ServiceTableFilter to obtain
stub_GdiGetRegionData.

CENSUS S.A. A
www.census-labs.com

> WRAPPER CHECKS

* stub_GdiGetRegionData is a wrapper for
NtGdiGetRegionData.

* stub_GdiGetRegionData will call IsWin32KSyscallFiltered to
check if the system call is filtered.

* Ifitisfiltered, NtUserWin32kSysCallFilterStub might log that
action and terminate the process based on NT kernel
settings.

CENSUS S.A. A
www.census-labs.com

> STUB PSEUDOCODE

int64 (int64 al, int64 a2)
{
(!IsWin32KSyscallFiltered(0x43164))
NtGdiGetRegionData(al, a2, a3, a4d);
NtUserWin32kSysCallFilterStub(aNtgdigetregion, 0x43i64);

status;

CENSUS S.A. A
www.census-labs.com

> WIN32K LEVELS

* Every restricted GUI process has a group of system calls that
are filtered.

* The groups are split in levels. The levels are basically
(different) sets of system calls.

* The default filter level for Edge is 5.

CENSUS S.A. A
www.census-labs.com

> WIN32K LEVELS

PsGetWin32KFilterSet returns the filter level for the current
process.

The level exists in EPROCESS->Win32KFilterSet.

There Is an array of bitmaps gaWin32KFilterBitmap, which
contains a bitmap for each filter level.

Based on the system call number (0x43), it checks if the bit
Is set on the bitmap.

CENSUS S.A. A
www.census-labs.com

> WIN32K FILTER ALGORITHM

sysNum)
filterLvl;
BYTE *bitmap
isFiltered;

filterLvl = PsGetWin32KFilterSet();

(filterLvl >= 7)
1;

bitmap = gaWin32KFilterBitmap[filterLvl];
(bitmap) {

bit = (1 << (sysNum & 7));

isFiltered = bit & bitmap[sysNum/8]);

isFiltered = ©;
isFiltered;

CENSUS S.A.
www.census-labs.com

> STRUCTURE (PART 2)

Win32kFilter

Filter script

Primitive Characteristics
Vanishing of GDI objects

Type Isolation

Palette in Type Isolation

Future of GDI Object Exploitation

CENSUS S.A. A
www.census-labs.com

> FILTER SCRIPT

* | wrote a pykd script for WinDBG based on that
algorithm.

* |t outputs all the filtered/allowed system calls from
each level.

e Let's execute it, on RS3.

CENSUS S.A. A
www.census-labs.com

> RS3 EDGE WIN32KFILTER

win32k! stub UserPromotePointer 8x1415

win32k! stub_UserQueryDisplayConfig @x1417

win32k! stub UserQueryInputContext ©x1419

win32k! stub UserRegisterRawInputDevices ©x1425
win32k! stub_UserRegisterTouchHitTestingWindow @x142a
win32k! stub UserReportInertia ©x1435

win32k! stub_UserSetCoreWindow ©x1441

win32k! stub UserSetCoreWindowPartner ©x1442

win32k! stub_UserSetImeOwnerWindow ©x144f

win32k! stub UserSetlLayeredWindowAttributes ©x1453
win32k! stub_UserSetProcessDpiAwarenessContext @x145b
win32k! stub_UserSetProcessInteractionFlags ©x145c
win32k! stub UserSetThreadInputBlocked @x1464

win32k! stub_UserSetThreadlLayoutHandles ©x1465
win32k! stub UserSetWindowCompositionAttribute ©x1468
win32k! stub_UserSetWindowFeedbackSetting @x146b
win32k! stub UserTransformPoint @x147c

win32k! stub_UserTransformRect ©x147d

win32k! stub UserUndelegatelnput @xl47e

win32k! stub UserUpdateInputContext ©x1485

win32k! stub_UserUpdatelayeredWindow @x1487

win32k! stub VisualCaptureBits ©x1495

win32k! stub_UserSetWindowlLongPtr ©x1497

number of allowed system calls

1176/349

Wl |py filter.py 55 @

CENSUS S.A.
www.census-labs.com

> ALLOWED GDI OBJECTS

* InRS3 there are 349 Win32k system calls available from the Edge sandboxed
context.

» We can create multiple GDI objects from the Edge sandboxed context.

win32k!_stub_GdiCreateCompatibleBitmap 0x104e
win32k!_stub_GdiCreateCompatibleDC 0x1057
win32k!_stub_GdiCreatePen 0x1059
win32k!_stub_GdiCreateBitmap 0x106e
win32k!_stub_GdiCreateRectRgn 0x1084
win32k!_stub_GdiCreateDIBSection 0x109a
win32k!_stub_GdiCreateDIBitmaplInternal 0x109f
win32k!_stub_GdiCreatePatternBrushinternal 0x10ac
win32k!_stub_GdiCreateSolidBrush 0x10b3
win32k!_stub_GdiCreateClientObj 0x10b5
win32k!_stub_GdiCreateBitmapFromDxSurface2 0x1170
win32k!_stub_GdiCreateOPMProtectedOutput 0x1175
win32k!_stub_GdiCreateOPMProtectedOutputs 0x1176

CENSUS S.A.
www.census-labs.com

> LOOKING FOR THE PALETTE PRIMITIVE

* NtGdiCreatePalettelnternal is absent from the list.
 We need another primitive for an Edge sandbox escape.
* Let’s investigate the characteristics a primitive should have!

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 2)

Win32kFilter

Filter script

Primitive Characteristics
Vanishing of GDI objects

Type Isolation

Palette in Type Isolation

Future of GDI Object Exploitation

CENSUS S.A.
www.census-labs.com

> PRIMITIVE CHARACTERISTICS

 Have a pointer that points to a buffer that we can write/read
by calling a system call from userspace.

* Usually objects have an array instead of a pointer, and an
8-byte integer that defines the bounds/offset of the array.

 We can overwrite that offset in order to obtain read/write
primitives.

CENSUS S.A. A
www.census-labs.com

> PRIMITIVE CHARACTERISTICS

 The creation and the use of an object should be reachable from system
calls allowed by the Win32k filter (our pykd script can help here).

* Since Windows RS4 will be released in the next month, we should be
able to call those system calls in systems with the RS4 win32kfilter.

 Let's review the win32kfilter of RS4 to match the GDI objects that we
can create (in comparison with RS3).

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 2)

Win32kFilter

Filter script

Primitive Characteristics
Vanishing of GDI objects

Type Isolation

Palette in Type Isolation

Future of GDI Object Exploitation

CENSUS S.A.
www.census-labs.com

> RS54 EDGE WIN32KFILTER

! Sstub UserRegisterlouc
win32k! stub UserRegisterTouchPadCapable ©0x1453
win32k! stub UserReportInertia ©0x145d
win32k! stub UserSetCoreWindow ©x146b
win32k! stub UserSetCoreWindowPartner 0x146c
win32k! stub UserSetImeOwnerWindow ©x147a
win32k! stub UserSetProcessDpiAwarenessContext 0x1487
win32k! stub UserSetProcessInteractionFlags 0x1488
win32k! stub UserSetThreadInputBlocked 0x1490
win32k! stub UserSetThreadlLayoutHandles ©0x1491
win32k! stub UserSetWindowFeedbackSetting 0x1497
win32k! stub UserTransformPoint ©x14a9
win32k! stub UserTransformRect ©0x14aa
win32k! stub UserUndelegateInput ©x14ab
win32k! stub UserUpdateInputContext 0x14b2
win32k! stub UserSetWindowlLongPtr ©x14c4
number of allowed system calls
1221/271

<

EF__!py filter 55 0

CENSUS S.A.
www.census-labs.com

> VANISHING OF GDI OBJECTS

 The number of allowed system calls has been decreased
by 78.

* All the GDI objects have vanished from the Edge
win32kfilter.

* We can't create GDI objects directly from the Edge
sandbox anymore.

CENSUS S.A. A
www.census-labs.com

> OTHER WIN32KFILTER LEVELS

What about other sandboxes?

FontDrvHost.exe which is the font parser, uses the 3™
level of win32kfilter.

We can call NtGdiCreatePalettelnternal from the 31 level.
Is it possible to use the palette primitive in RS4?

CENSUS S.A. A
www.census-labs.com

> PALETTE IN RS4

* The short answer is NO.

* Palette and other GDI primitives have changed in RS4.

* The same mitigation (Type Isolation) that is used in GDI
bitmaps is now applied to Palettes.

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 2)

Win32kFilter

Filter script

Primitive Characteristics
Vanishing of GDI objects

Type Isolation

Palette in Type Isolation

Future of GDI Object Exploitation

CENSUS S.A. A
www.census-labs.com

> TYPE ISOLATION

* Windows 10 RS4 introduced a mitigation called Type
Isolation.

* The idea is to isolate the data structures that contain
pointers (metadata) from the entries (data).

CENSUS S.A. A
www.census-labs.com

> HOW TYPE ISOLATION WORKS

* Win32k allocates a section object for each GDI object
Type and maps it.

* As aresult, the object metadata for each type is mapped
to a different isolated address space.

* The data entries are mapped to the regular session heap,
as every other buffer.

CENSUS S.A. A
www.census-labs.com

> TYPE ISOLATION

* Every object type that uses the mitigation allocates a
typelsolation data structure.

typelsolation

CSectionEntry *cSectionEntryNext;
CSectionEntry *cSectionEntryPrev;
ULONG64 pushlock;
DWORD unknown2;

};

* Every typelsolation is stored in an array gpTypelsolation.

CENSUS S.A. A
www.census-labs.com

> CSECTION ENTRY

 (Csection is a data structure that contains the section object,
the address of the isolated address and a bitmap.

CSectionEntry

typelsolation *typelsolationNext;
typelsolation *typeIlsolationPrev;
ULONG64 Section;
ULONG64 MappedBase;
ULONG64 CsectionBitmap;

}s

* The bitmap describes the number of available entries in the

address space.
CENSUS S.A. A
www.census-labs.com

> CSECTION ENTRY

* The section for the palette type, maps an address space of
0x9000 size, that can hold up to 0x100 palette headers
(0x90 hdr size).

o Afterwards, a new Csection is allocated, with another section
object.

* That will create another isolated address space for palettes.

CENSUS S.A. A
www.census-labs.com

> STRUCTURE (PART 2)

Win32kFilter

Filter script

Primitive Characteristics
Vanishing of GDI objects

Type Isolation

Palette in Type Isolation
Future of GDI Object Exploitation

CENSUS S.A.
www.census-labs.com

> CASE STUDY: PALETTE

* Palette uses gpTypelsolation[1], which is an array of
typelsolation structures.

* The palette object will be allocated in
NSInstrumentation::CTypelsolation::AllocateType

* The palcolor buffer will be allocated by win32kAlloc in the
regular session heap.

CENSUS S.A. A
www.census-labs.com

> PALETTE CREATION IN RS4

typelsolation = (typelsolation *)gpTypelsolation[1];

(typelsolation)
palette = (PALETTE *)NSInstrumentation::CTypeIsolation<36864, 144>::AllocateType(typelsolation);

palette->cEntries = cEntries;

palette->palUnique = InterlockedIncrement((__int32 *)&ulXlatePalUnique);
palette->hdcHead = 0i64;

palette->hSelected = 9i64;

palette->cRefRegular = 0;

palette->cRefhPal = @;

palette->ptransCurrent = 9i64;

palette->ptrans0ld = 0i64;

palette->pad5 = @i

palette->pad = 0;

palette->pad7 = 0i64;

palette->ppalThis = palette;

palette->ppalColor = Win32AllocPoolImpl(33i64, viil,

CENSUS S.A.
www.census-labs.com

> PALETTE CREATION IN RS4

* After spraying with palettes, we observe that each new
section begins at a position aligned to 0x10000 bytes.

* The first 0x9000 will contain palette entries, while the next
0x7000 will be unmapped.

CENSUS S.A. A
www.census-labs.com

> PALETTE CREATION IN RS4

new cSection allocated!
palette = ffff881183bboooo
palette->palColor = ffff881184983bf0

palette = ffff881183bbeo90
palette->palColor = ffff8811849837d0

palette = ffff881183bb8ea0
palette->palColor = ffff88118498bbfe

palette = ffff881183bb8f30
palette->palColor = ffff88118498b7d0

new cSection allocated!
palette = ffff881183bcooo0
palette->palColor = ffff88118498c010

palette = ffff881183bco090
palette->palColor = ffff88118498cbfeo

CENSUS S.A.
www.census-labs.com

> STRUCTURE (PART 2)

Win32kFilter

Filter script

Primitive Characteristics

Vanishing of GDI objects

Type Isolation

Palette in Type Isolation

Future of GDI Object Exploitation

CENSUS S.A. A
www.census-labs.com

> FUTURE OF GDI OBJECT EXPLOITATION

* The objects Surface (bitmaps), Brush & Pen, Palette, Font
and Path seem to be safe with Type Isolation.

 The other GDI objects are still allocated entirely in the
heap.

— Can thus still be abused for read/write primitives!

CENSUS S.A. A
www.census-labs.com

Sl 7“““/

