
WINDOWS 10 RS2/RS3 GDI
DATA-ONLY EXPLOITATION TALES

NIKOLAOS SAMPANIS (@_sm4ck)

nsampanis@census-labs.com

OFFENSIVECON 2018 BERLIN

www.census-labs.com

> WHO AM I

• Computer security researcher at CENSUS S.A.

• Vulnerability research, RE, exploit development

• Focusing on Windows kernel

> STRUCTURE

• This presentation is split in two parts.

• In Part 1, I am going to present:
– A currently public Windows kernel bug, that I independently

discovered some time ago.

– A mitigation of GDI object exploitation using pushlocks.

– Two ways to bypass this mitigation.

• In Part 2, I will present:
– The Win32kfilter system call filtering mechanism (used in the Edge

browser among other places).

– GDI primitives characteristics and their future in RS4.

> INTRODUCTION

• In early July 2017 I was writing an exploit for CVE-2016-3309,
a Windows kernel bug.

• The vulnerability was documented in a blogpost, without PoC
code, by Nikolas Economou.

• I realized that the vulnerability was re-introduced in
Windows 10 RS2

– It is currently patched again (in RS3, Sep. 2017).

• Since the bug has been explained in depth by a couple of
researchers I will explain it very briefly.

> DISCLAIMER

• All code snippets in this presentation are the result of
reverse engineering.

• Except, of course, those that describe implemented
examples.

> STRUCTURE (PART 1)

• The Bug

• GDI Handle Manager

• The Palette primitive

• The mitigation

• The deadlock technique

• Fixing the deadlock problem

• Delayed free list technique

> CVE-2016-3309

• A GDI PATH object is used to store coordinates for
drawing.

• We can create a PATH object by calling
NtGdiBeginPath.

• We can store coordinates with functions like
MoveToEx, LineTo, PolylineTo, PolyPolyline,
PolyBezier.

• BOOL MoveToEx(HDC hdc, int X, int Y);

> CVE-2016-3309

• The data structure that PATH uses to store coordinates is POINTFIX.

• Multiple coordinates are stored in PATHRECORD

> CVE-2016-3309

• The number of how many coordinates we have
stored is saved in cCurves.

> CVE-2016-3309

• Region is a similar object that stores coordinates.

• Coordinates in Region are stored in the EDGE data
structure.

> PATH TO REGION

• The Win32k system call NtGdiPathToRegion converts
a PATH object to REGION object.

• Based on cCurves, the number of edges is allocated.

> PATH TO REGION

> HEAP OVERFLOW

• The heap overflow takes place in AddEdgeToGET.

• I wrote the PoC for RS2 as explained, and
I got a bugcheck (kernel panic).

• The reason was a mitigation added in GDI Handle
Manager at RS1.

> STRUCTURE (PART 1)

• The Bug

• GDI Handle Manager

• The Palette primitive

• The mitigation

• The deadlock technique

• Fixing the deadlock

• Delayed free list technique

> GDI HANDLE MANAGER

• Stores GDI objects in the handle table and returns a
handle.

• Translates a handle to kernel object address.

• Consists of a couple of data structures.

> GDI HANDLE MANAGER

• The core data structure GdiHandleManager is allocated in
GdiHandleManager::Create.

> GDI HANDLE MANAGER DIRECTORY

• The member dir also gets allocated by calling
GdiHandleEntryDirectory::Create.

> GDI HANDLE MANAGER TABLE

• The member tables is allocated at GdiHandleEntryTable::_Create.

> SHARED MEMORY CELL DATA

• For each GDI object, a GDICELL64 is created, which are the metadata of the object.

• sharedMem_CellData is an array of GDICELL64 entries.

• sharedMem_CellData is shared memory between win32k and GUI processes.

• Every GUI process stores a copy of sharedMem_CellData in
PEB->GdiSharedHandleTable.

> GDI HANDLE MANAGER ENTRYDATALOOKUPTABLE

• The member gdiLookupTable is allocated at
GdiHandleEntryTable::EntryDataLookupTable::Create

• Each LookupEntryAddress pointer in EntryDataLookupTable,
when allocated, will contain 0x100 entries of LOOKUP_ENTRY.

> THE ENTRY

• Each entry contains the kernel address of the allocated
object GdiObjectAddress and a push lock EX_PUSH_LOCK.

> GDI MANAGER STRUCTURES GRAPH

> OBJECT CREATION

• Every NtGdiCreate* allocates an object and returns a handle.

• The last 3 bytes of handle identify the objects type and the

index of the entry in the handle table.

• We can think of these structures as a page table, where each

new object lives in a LOOKUP_ENTRY.

> THE GDI OBJECT

• Each GDI object starts with an object header.

• Tid contains KTHREAD data structure, that we can leak by reading the
heap.

• hHmgr contains the handle of the object.

> INSERT OBJECT
• HmgInsertObjectInternal inserts a GDI object in the handle table and returns the handle.

> STRUCTURE (PART 1)

• The Bug

• GDI Handle Manager

• The Palette primitive

• The mitigation

• The deadlock technique

• Fixing the deadlock problem

• Delayed free list technique

> WINDOWS RS3 PRIMITIVE

• The palette GDI object.

• Abused for read/write primitives in RS3.

• Used in my exploits to obtain system token.

• Presented by Saif El-Sherei (0x5A1F) at DEFCON
2017.

> PALETTE

• An entry of Palette is defined in the structure PALETTEENTRY.

• In order to create a palette, we should first allocate a LOGPALETTE
structure, which defines the version and the number of entries.

> CREATE PALETTE

> PALETTE IN MEMORY

> READ ENTRIES

> SET ENTRIES

> READ/WRITE PRIMITIVES

• We should first spray with palette objects in order to arrange them
back to back in the heap.

• Overwrite ppalColor pointer of paletteA to point to address
&ppalColor of paletteB.

palA->ppalColor = &palB->ppalColor;

PALETTE A PALETTE B

> WRITE DATA

• We call SetPaletteEntries with handle of paletteA to set
paletteB->ppalColor. (1)

• Then we write any data to that address by calling SetPalette
Entries with handle of paletteB. (2)

> READ DATA

• We call SetPaletteEntries with handle of paletteA to set
paletteB->ppalColor. (1)

• Then we read data from that address by calling

GetPaletteEntries with handle of paletteB. (2)

> STRUCTURE (PART 1)

• The Bug

• GDI Handle Manager

• The Palette primitive

• The mitigation

• The deadlock technique

• Fixing the deadlock problem

• Delayed free list technique

> REFERENCE COUNTING

• Before a GDI object is used, a reference takes place
(increasing the reference count).

• Afterwards a dereference takes place (decreasing the count).

• GreSetPaletteEntries calls HmgShareLockCheck to
find the entry and reference it.

• ulSetEntries will write it (use it).

• DEC_SHARE_REF_CNT will dereference it.

> REFERENCE COUNTING

> REFERENCE COUNTING

• HmgShareLockCheck finds the entry LOOKUP_ENTRY
by argument handle (1).

• Acquires the lock LOOKUP_ENTRY->lock(2) to make the reference
thread safe.

• References the object (3).

• Instead of releasing the lock, finds the entry again using the handle
from the object header object->hHmgr (4).

• Release the lock LOOKUP_ENTRY->lock (5).

> REFERENCE COUNTING

> MITIGATION

• In case of a heap overflow, the argument handle
will be different from object->hHmgr in the heap.

• We will release a non acquired lock, decrementing

LOOKUP_ENTRY->lock by 1(0xffffffff).

• ulSetEntries will perform the write.

• Later in DEC_SHARE_REF_CNT, we will try to
acquire a lock with value (0xffffffff) and deadlock
there.

> MITIGATION

> MITIGATION

• So far we used to spray with a primitive and allocate the
vulnerable buffer to one of the holes.

PALETTE 1 PALETTE 2 PALETTE 3

> MITIGATION

PALETTE 1 PALETTE 2 PALETTE 3

• With this mitigation we are going to corrupt the hmgr of PALETTE 2.

• As a result, when we call setPaletteEntries to use our primitive (Palette
2), our thread is going to deadlock.

> FINAL DEATH

• I tried a couple of approaches.

• Found a technique that worked in RS2/RS3, that I will
explain in detail later.

• A couple of weeks had passed and the bug was
reported by @bitshifter123 to ZDI.

• In October a blogpost by @bitshifter123, introduced a
technique BUT with a deadlock problem.

> STRUCTURE (PART 1)

• The Bug

• GDI Handle Manager

• The Palette primitive

• The mitigation

• The deadlock technique

• Fixing the deadlock problem

• Delayed free list technique

> THE DEADLOCK TECHNIQUE

• GreSetPaletteEntries will execute

XEPALOBJ::ulSetEntries and then might deadlock.

• We have one arbitrary write.

• We can use that write to corrupt the next object in
the heap.

> THE DEADLOCK TECHNIQUE

• From another thread we can use the next object as a
read/write primitive.

• The process will not be able to terminate since it has
a deadlocked thread.

> THE DEADLOCK TECHNIQUE GRAPH

PALETTE 1 PALETTE 2 PALETTE 3

• By calling the SetPaletteEntries we use our one arbitrary write, to
corrupt palette 3 with a valid hmgr.

• Our thread is going to deadlock, but we can use Palette 3 from another
thread as a read/write primitive.

> STRUCTURE (PART 1)

• The Bug

• GDI Handle Manager

• The Palette primitive

• The mitigation

• The deadlock technique

• Fixing the deadlock problem

• Delayed free list technique

> PUSHLOCK

• The pushlock mechanism used by the GdiHandleManager,
at first sight, looks like a spinlock.

• KTHREAD has an array of LockEntries, at each entry the
address of an acquired lock is stored.

• ExAcquirePushLockExclusiveEx will store the address of
pushlock in KTHREAD->LockEntries (1) and will set the
first bit of pushlock (2).

• In case that the first bit is already set (acquired),
ExfAcquirePushLockExclusiveEx will be called (3).

> ACQUIRE PUSHLOCK

> ALREADY ACQUIRED

• In DEC_SHARE_REF_CNT we tried to acquire a
pushlock with value 0xffffffff.

• 0xffffffff seems like an acquired pushlock.

• ExfAcquirePushLockExclusiveEx will be called.

> WAITBLOCK

• ExfAcquirePushLockExclusiveEx creates a waitblock.

• The waitblock is a data structure, that keeps the
waiters linked until the pushlock is released.

> WAITBLOCK

• Depending on whether we are the first thread that will
wait for the pushlock, waitblock will be set accordingly.

• In case we are the first waiter, waitBlock.Last will be set.

• Otherwise waitBlock.Next will be used to create a linked list
between waitblocks.

> WAITBLOCK

• The 2nd bit of pushlockValue will be set (0xffffffff).

• The waitblock will be set as there are multiple waiters.

– The address of this waitblock, will be stored in the pushlock.

• KeWaitForSingleObject will be called, blocking until the
pushlock is released.

> WAITBLOCK

> LOCK ENTRIES

• The deadlocked thread has 2 KTHREAD->LockEntries set.

• KTHREAD->LockEntries[0], contains the address of a
valid Pushlock that we acquired in HmgShareLockCheck.

– Then we released a non acquired lock.

– Tried to acquire it in DEC_SHARE_REF_CNT.

• KTHREAD->LockEntries[1], that contains the address of a
Pushlock that has a waitblock as value.

> LOCK ENTRIES

> WAKING UP

• Our plan is to set the waitblock (as there is only one
waiter) and release it.

• That should wake up the thread.

• Let’s study how the release of a pushlock works.

> RELEASE PUSHLOCK

• ExReleasePushLockExclusiveEx will decrement the pushlock
by 1 (1).

• If bit 2 is set, it will call ExfTryToWakePushLock to
wake up the waiter in the waitblock(2).

• Then will loop through KTHREAD->LockEntries to find
the one that contains the pushlock (3).

• If the entry wasn’t found and the entries aren't exhausted
the thread will bugcheck (4).

> RELEASE PUSHLOCK

> WAKING UP STEPS

• All read/write operations in the algorithm are implemented with the palette
primitive described earlier.

1) Read the heap to find BASEOBJECT64->Tid,
which is the address of deadlocked thread KTHREAD.

2) Read KTHREAD>LockEntries[1], to get the
address of the pushlock that contains the waitblock.

3) Clear the flags in waitblock and set the flags for one waiter.

4) Set waitBlock.Last equal to waitblock address and
waitBlock.Next equal to zero.

> WAKING UP STEPS

5) Read KTHREAD->LockEntries[0], to get the address of valid
objects pushlock and set the value to zero.

6) set the KTHREAD>AutoBoostEntriesExhausted flag, to our thread in
order to release a pushlock we didn’t acquire from that thread.

7) Call SetPaletteEntries with the handle of the object that we

corrupted. That will call HmgShareLockCheck and wake up the waiter.

> WAKE UP!

> DEMO

• The bug was patched in RS3.

• I wrote a driver that imitates the bug, to demonstrate the
exploit in RS3.

• The goal of the demo is to demonstrate the mitigation
bypass technique.

> STRUCTURE (PART 1)

• The Bug

• GDI Handle Manager

• The Palette primitive

• The mitigation

• The deadlock technique

• Fixing the deadlock problem

• Delayed free list technique

> ANOTHER TECHNIQUE

• Back when I was working on a way to bypass the mitigation,
the deadlock technique wasn’t an option.

• I thought, since all the handles are known, I should try to
free a GDI object and allocate the vulnerable buffer to the
same space.

• In this way, I will be able to overwrite the next palette object
with a valid handle.

• Of course that didn’t work, because of the delayed free list.

> DELAYED FREE LIST

• ExFreePoolWithTag is called to free a heap block.

• The block might not get freed directly, instead it is going to
get stored in the delayed free list.

• The list can store up to 32 blocks, after that it will free them
all and start storing again.

> EXFREEPOOLWITHTAG

> THE TECHNIQUE

• Suppose that we need to overflow a buffer of size 0x420.

• We should allocate 32 palettes of different size.

• Spray with palettes of 0x420 size.

> THE TECHNIQUE

• Free one of the 0x420 size palettes.

• Free the 32 palettes of different size.

• Trigger the vulnerable ioctl, that will allocate a 0x420 buffer.

• That buffer should be claimed on the same heap block of a
0x420 palette we just freed.

> THE TECHNIQUE

> THE TECHNIQUE

• Spray With 0x420 palettes, without holes.

PALETTE 1 PALETTE 2 PALETTE 3 PALETTE 4

> THE TECHNIQUE

• We free one 0x420 buffer and 32 palettes of different size.

PALETTE 1 PALETTE 3 PALETTE 4

> THE TECHNIQUE

• We call the vulnerable ioctl/system call that will allocate the
vulnerable buffer in the same memory.

PALETTE 1 PALETTE 3 PALETTE 4

> DEMO

• For this demo I will reuse my vulnerable driver.

> STRUCTURE (PART 2)

• Win32kFilter

• Filter script

• Primitive Characteristics

• Vanishing of GDI objects

• Type Isolation

• Palette in Type Isolation

• Future of GDI Object Exploitation

> WIN32K FILTER

• Privilege escalation exploits are on the rise, because of sandboxes.

• The Win32k component, a provider of system calls, has introduced
win32kfilter, a filtering mechanism that cuts down the number of
system calls available to sandboxed processes (thus reducing the
kernel’s attack surface).

• Our read/write primitive should be reachable from win32kfilter.

• To understand win32kfilter we should take a deeper look in the system
call handler.

> SYSTEM CALL HANDLER

• The syscall handler is initialized at boot in InitializeBootStructures

__writemsr(0xC0000082, KiSystemCall64);

• When a syscall instruction is executed from a 64-bit program
KiSystemCall64 will be called.

> SERVICE TABLE

• KiSystemCall64 gets serviceTable from
ServiceDescriptorTable.

• Later on, from serviceTable it gets the offset of the system
call, based on the system call number.

• Then adding the offset to the serviceTable gives us the
address of the system call.

> SERVICE TABLE

• The table for NT system calls is

KiServiceTable in KeServiceDescriptorTable (1).

• For a GUI process it’s W32pServiceTable in

KeServiceDescriptorTableShadow (2).

• For a restricted GUI process it’s W32pServiceTableFilter
in KeServiceDescriptorTableFilter (3).

> KISYSTEMCALL64

> NTGDIGETREGIONDATA

• Suppose that we want to call NtGdiGetRegionData from an
Edge sandboxed process.

• KiSystemCall64 will read the offset from
W32pServiceTableFilter.

• Then will add the offset to the ServiceTableFilter to obtain
stub_GdiGetRegionData.

> WRAPPER CHECKS

• stub_GdiGetRegionData is a wrapper for
NtGdiGetRegionData.

• stub_GdiGetRegionData will call IsWin32KSyscallFiltered to
check if the system call is filtered.

• If it is filtered, NtUserWin32kSysCallFilterStub might log that
action and terminate the process based on NT kernel
settings.

> STUB PSEUDOCODE

> WIN32K LEVELS

• Every restricted GUI process has a group of system calls that
are filtered.

• The groups are split in levels. The levels are basically
(different) sets of system calls.

• The default filter level for Edge is 5.

> WIN32K LEVELS

• PsGetWin32KFilterSet returns the filter level for the current
process.

• The level exists in EPROCESS->Win32KFilterSet.

• There is an array of bitmaps gaWin32KFilterBitmap, which
contains a bitmap for each filter level.

• Based on the system call number (0x43), it checks if the bit
is set on the bitmap.

> WIN32K FILTER ALGORITHM

> STRUCTURE (PART 2)

• Win32kFilter

• Filter script

• Primitive Characteristics

• Vanishing of GDI objects

• Type Isolation

• Palette in Type Isolation

• Future of GDI Object Exploitation

> FILTER SCRIPT

• I wrote a pykd script for WinDBG based on that
algorithm.

• It outputs all the filtered/allowed system calls from
each level.

• Let’s execute it, on RS3.

> RS3 EDGE WIN32KFILTER

> ALLOWED GDI OBJECTS

• In RS3 there are 349 Win32k system calls available from the Edge sandboxed
context.

• We can create multiple GDI objects from the Edge sandboxed context.

win32k!_stub_GdiCreateCompatibleBitmap 0x104e
win32k!_stub_GdiCreateCompatibleDC 0x1057
win32k!_stub_GdiCreatePen 0x1059
win32k!_stub_GdiCreateBitmap 0x106e
win32k!_stub_GdiCreateRectRgn 0x1084
win32k!_stub_GdiCreateDIBSection 0x109a
win32k!_stub_GdiCreateDIBitmapInternal 0x109f
win32k!_stub_GdiCreatePatternBrushInternal 0x10ac
win32k!_stub_GdiCreateSolidBrush 0x10b3
win32k!_stub_GdiCreateClientObj 0x10b5
win32k!_stub_GdiCreateBitmapFromDxSurface2 0x1170
win32k!_stub_GdiCreateOPMProtectedOutput 0x1175
win32k!_stub_GdiCreateOPMProtectedOutputs 0x1176

> LOOKING FOR THE PALETTE PRIMITIVE

• NtGdiCreatePaletteInternal is absent from the list.

• We need another primitive for an Edge sandbox escape.

• Let’s investigate the characteristics a primitive should have!

> STRUCTURE (PART 2)

• Win32kFilter

• Filter script

• Primitive Characteristics

• Vanishing of GDI objects

• Type Isolation

• Palette in Type Isolation

• Future of GDI Object Exploitation

> PRIMITIVE CHARACTERISTICS

• Have a pointer that points to a buffer that we can write/read
by calling a system call from userspace.

• Usually objects have an array instead of a pointer, and an
8-byte integer that defines the bounds/offset of the array.

• We can overwrite that offset in order to obtain read/write
primitives.

> PRIMITIVE CHARACTERISTICS

• The creation and the use of an object should be reachable from system
calls allowed by the Win32k filter (our pykd script can help here).

• Since Windows RS4 will be released in the next month, we should be
able to call those system calls in systems with the RS4 win32kfilter.

• Let’s review the win32kfilter of RS4 to match the GDI objects that we
can create (in comparison with RS3).

> STRUCTURE (PART 2)

• Win32kFilter

• Filter script

• Primitive Characteristics

• Vanishing of GDI objects

• Type Isolation

• Palette in Type Isolation

• Future of GDI Object Exploitation

> RS4 EDGE WIN32KFILTER

> VANISHING OF GDI OBJECTS

• The number of allowed system calls has been decreased
by 78.

• All the GDI objects have vanished from the Edge
win32kfilter.

• We can’t create GDI objects directly from the Edge
sandbox anymore.

> OTHER WIN32KFILTER LEVELS

• What about other sandboxes?

• FontDrvHost.exe which is the font parser, uses the 3rd

level of win32kfilter.

• We can call NtGdiCreatePaletteInternal from the 3rd level.

• Is it possible to use the palette primitive in RS4?

> PALETTE IN RS4

• The short answer is NO.

• Palette and other GDI primitives have changed in RS4.

• The same mitigation (Type Isolation) that is used in GDI
bitmaps is now applied to Palettes.

> STRUCTURE (PART 2)

• Win32kFilter

• Filter script

• Primitive Characteristics

• Vanishing of GDI objects

• Type Isolation

• Palette in Type Isolation

• Future of GDI Object Exploitation

> TYPE ISOLATION

• Windows 10 RS4 introduced a mitigation called Type
Isolation.

• The idea is to isolate the data structures that contain
pointers (metadata) from the entries (data).

> HOW TYPE ISOLATION WORKS

• Win32k allocates a section object for each GDI object
Type and maps it.

• As a result, the object metadata for each type is mapped
to a different isolated address space.

• The data entries are mapped to the regular session heap,
as every other buffer.

> TYPE ISOLATION

• Every object type that uses the mitigation allocates a
typeIsolation data structure.

• Every typeIsolation is stored in an array gpTypeIsolation.

> CSECTION ENTRY

• Csection is a data structure that contains the section object,
the address of the isolated address and a bitmap.

• The bitmap describes the number of available entries in the
address space.

> CSECTION ENTRY

• The section for the palette type, maps an address space of
0x9000 size, that can hold up to 0x100 palette headers
(0x90 hdr size).

• Afterwards, a new Csection is allocated, with another section
object.

• That will create another isolated address space for palettes.

> STRUCTURE (PART 2)

• Win32kFilter

• Filter script

• Primitive Characteristics

• Vanishing of GDI objects

• Type Isolation

• Palette in Type Isolation

• Future of GDI Object Exploitation

> CASE STUDY: PALETTE

• Palette uses gpTypeIsolation[1], which is an array of
typeIsolation structures.

• The palette object will be allocated in
NSInstrumentation::CTypeIsolation::AllocateType

• The palcolor buffer will be allocated by win32kAlloc in the
regular session heap.

> PALETTE CREATION IN RS4

> PALETTE CREATION IN RS4

• After spraying with palettes, we observe that each new
section begins at a position aligned to 0x10000 bytes.

• The first 0x9000 will contain palette entries, while the next
0x7000 will be unmapped.

> PALETTE CREATION IN RS4

> STRUCTURE (PART 2)

• Win32kFilter

• Filter script

• Primitive Characteristics

• Vanishing of GDI objects

• Type Isolation

• Palette in Type Isolation

• Future of GDI Object Exploitation

> FUTURE OF GDI OBJECT EXPLOITATION

• The objects Surface (bitmaps), Brush & Pen, Palette, Font
and Path seem to be safe with Type Isolation.

• The other GDI objects are still allocated entirely in the
heap.

– Can thus still be abused for read/write primitives!

