

OR'LYEH?
The Shadow over Firefox

INFILTRATE 2015

 PATROKLOS ARGYROUDIS
 CENSUS S.A. argp@census-labs.com www.census-labs.com

Who am I

● Researcher at CENSUS S.A.
- Vulnerability research, reverse engineering,

exploit development, binary & source code
auditing, tooling for these

● Before CENSUS I was a postdoc at Trinity College
Dublin
- Designing, implementing, attacking network

security protocols

● Heap exploitation obsession, both userland and
kernel

Outline (the menu ;)

● Previous work on Firefox
exploitation

● Firefox & SpiderMonkey
internals (>= release 34)

● Firefox exploitation mitigation
features (current and
planned)

● The shadow (over Firefox)
WinDBG/pykd utility

● Exploitation methodologies
(and demos ;)

Previous work

● Owning Firefox's heap
(2012)

● A tale of two Firefox bugs
(2012)

● VUPEN Pwn2Own Firefox
use-after-free (2014)

Owning Firefox's heap

● Applied mine and huku's Phrack paper,
Pseudomonarchia jemallocum (2012), to Firefox

● jemalloc metadata corruption attacks for Firefox

● jemalloc heap arrangement with unicode strings

● Example of exploiting CVE-2011-3026 (libpng) on
Firefox via jemalloc heap manipulation

● unmask_jemalloc gdb/Python tool for Firefox Linux
and OS X

A tale of two Firefox bugs

● Fionnbharr Davies' work on exploiting:
- CVE-2011-2371 reduceRight()
- CVE-2012-0469 IDBKeyRange use-after-free

● Internals of SpiderMonkey
- Representations of JavaScript objects in memory

have changed
- Metadata of these objects not reachable from

their user-controlled data

● Some jemalloc notes

VUPEN Pwn2own Firefox

● Use-after-free of a 0x2000-sized object

● Heap spray of 0x2000-sized ArrayBuffer (typed
array) objects to take control of the freed object
and modify a neighboring sprayed ArrayBuffer
object's length

● Again, data of typed array objects no longer with
their metadata

● No arbitrary-sized typed array object
metadata+data sprays

VUPEN Pwn2own Firefox

Firefox internals

● SpiderMonkey JavaScript engine
- Native JS values (jsvals): string, number,

object, boolean, null, undefined
- The runtime must be able to query a jsval's

type (as stored in a variable or an object's
attribute)

● 64-bit representation
- Doubles are full 64-bit IEEE-754 values
- Others use 32 bits for tagging the type and 32

bits for the actual value

jsval representation

object

string

integer

double

SpiderMonkey IEEE-754

● If tag value is > 0xFFFFFF80 then the 64 bit
value is interpreted as a jsval of the
corresponding type

● If tag value is <= 0xFFFFFF80 then the 64 bit
value is interpreted as an IEEE-754 double

● Important note: There is no IEEE-754 double
that corresponds to a 32-bit representation
value > 0xFFF00000
- These are defined as NaN

JSObject

● Non-jsval, non-native, complex objects
- In essence mappings from names (properties) to values

● JSObject members:
- *shape_: structural description to avoid dictionary

lookups from property names to slots_ array indexes
- *type_: the type (internal) of the JSObject
- *slots_: named properties array
- *elements_: if ArrayObject, jsval elements
- flags: how are data written to elements_, and other

metadata
- initializedLength: initialized elements, <= capacity for

non-arrays, <= length for ArrayObjects
- capacity: number of allocated slots
- length: used only for ArrayObjects

An ArrayObject JSObject

shape_

flags

type_ slots elements

initLength capacity length

new
elements
HeapSlot

old
elements
HeapSlot

JSString (0xffffff85)

● JSInlineString
- On 32-bit platforms: 7 ASCII, 3 unicode
- On 64-bit platforms: 15 ASCII, 7 unicode

● test_array[7] = “Hello, Firefox”; // len == 14 == 0xe

flags length inline content ...

JSString (0xffffff85)

flags length content

Generational GC

● A new, generational garbage collection (GGC) was
enabled by default since Firefox release 32

● Separate heap on which most SpiderMonkey objects are
allocated – nursery

● There is also the (old) normal GC heap, also called major
heap – tenured

● When the nursery becomes full (or some other event
happens) we have the so-called minor GC pass
- Short-lived temporary nursery objects are collected
- Survivors (objects reachable from roots) are moved to

the tenured heap

Generational GC (cont.)

● GC root: A reachable, alive, object in the heap graph

● Once an object is moved to the tenured heap, it is
checked for outgoing pointers to nursery objects
- These are moved from the nursery to tenured as

well
- Iterative process until all reachable objects are

moved
- The nursery space they occupied is set to available

● Impressive performance gains; most JavaScript
allocations are indeed short-lived

Nursery Tenured

Nursery Tenured

Before minor GC

After minor GC

First unallocated
nursery byte

First unallocated
nursery byte

Temporary object Survivor object Free memory

SpiderMonkey runtime

● SpiderMonkey is single-threaded by default

● However, workers can be launched/created

● Each worker has its own JS runtime

● One separate GGC heap (nursery + tenured) per
JS runtime

● JS runtimes do not share heap memory, i.e one
cannot access objects allocated by the other

GC nursery heap

● VirtualAlloc (or mmap on Linux) of 16MB (hardcoded)

● Basically a bump allocator; a pointer is maintained that
points to the first unallocated byte in the nursery
- To make an allocation of X bytes, first there is a

check if this fits in the nursery
- If it does, X is added to the pointer and its previous

value is returned to service the allocation request

● If the new object doesn't fit, its slots are allocated on
the jemalloc-managed heap and the object itself on
the nursery
- A minor GC will move the object to the tenured heap
- Its slots will remain on the jemalloc heap

GC tenured heap

● The normal (old) GC heap – more or less same
implementation too

● Some allocations go directly to the tenured heap
- Known long-lived objects, e.g. global objects
- Function objects (due to JIT requirements)
- Object with finalizers (due to the way that the

nursery minor GC works) – most DOM objects

● The GC heap has its own metadata (and
algorithms) to manage memory
- Distinct from jemalloc

jemalloc

● A bitmap allocator designed for performance and not
primarily memory utilization
- Major design goal to situate allocations contiguously

in memory
- Currently at major version 3

● The latest Firefox release (38.0.5) includes a forked
version from major release 2
- Called mozjemalloc; mostly the same
- Firefox is moving (nightly) to upstream jemalloc3

● Used in Firefox for allocations that become too big for
the tenured heap
- Some allocations go directly to the jemalloc heap

jemalloc architecture

jemalloc architecture

Some jemalloc notes

● Bins are used to manage/locate free regions
- 37 bins in Firefox: 2, 4, 8, 16, 32, …, 512, 1024, 2048
- > 2048: large and huge – not covered by this talk
- Each bin is associated with several runs

● Allocation requests are rounded up and assigned to a bin (size
class)
- Lookup for a run with a free region
- If none found, a new run is allocated

● Same-sized objects of different types contiguous in memory

● LIFO: a free followed by GC and an allocation of the same size
most likely ends up in the freed region

● Free jemalloc regions are sanitized to mitigate uninitialized
memory leaks

Nursery Tenured

Nursery Tenured

Before minor GC

After minor GC

Nursery doesn't have
free memory for
JSObject + its slots

First
unallocated
nursery byte

Temporary
object

JSObject
+ slots

Free memory
jemalloc

slots_ pointer

JSObject
allocation
request

Hardening features

● PresArena

● Heap partitioning

● Sandbox

● ASLR, DEP, GS (all DLLs and firefox.exe)

● Heap spray protection (only for strings currently)

● JIT hardening: nope ;)

● Garbage collection (not on demand)

PresArena

● Gecko's specialized heap for CSS box objects

● When a CSS box object is freed, the free PresArena heap
“slot” it is added to a free list based on its type
- Separate free lists for each CSS box object type

● A new allocation is serviced from the free list of its type
- Exploitable UAFs only possible via same-object-type

trickery (attributes' values etc)

● PresArena also services certain related but non-CSS box
objects
- These use per size free lists
- UAFs of different object types are possible here

Heap partitioning

● Plans for separate heap partitions for:
- DOM nodes (like IE and Chrome)
- String data
- Typed arrays

● Considered Chromium's PartitionAlloc
- Seems like they rejected it due to performance

reasons

● Going for jemalloc3
- Looks like they plan to implement heap

partitioning for jemalloc3 and submit it upstream

Sandbox

● Content process sandbox
- Based on Chromium sandbox's code
- Parent process, i.e. broker
- Content process, i.e. target
- IPC: IPDL, MessageManager (here is where you look for

bugs ;)
- Current state: quite permissive whitelist
- Policies at sandboxBroker.cpp:

SandboxBroker::SetSecurityLevelForContentProcess()

● Gecko Media Plugin (GMP) sandbox
- For Gecko processes launched for media playback
- More restrictive whitelist (same file as above):

SandboxBroker::SetSecurityLevelForGMPlugin()

Flash sandbox

● Flash is an out-of-process plugin (OOPP)

● Currently sandboxed by its own “protected mode”
- Low integrity process
- Restricted access token capabilities
- Job restrictions (no launching of new processes)

● Plans to not enable the protected mode in the
future
- Due to stability problems
- Implement a Firefox-specific Flash sandbox
- Again based on Chromium sandbox's code

Garbage collection

● No unprivileged JS API to trigger a GC on demand
- We need this to make favorable heap layouts

● Different types of GC in SpiderMonkey

● Here's how you can find ways to trigger a GC
- Just read the code ;)

The shadow over Firefox

shadow

● Re-designed and enhanced unmask_jemalloc

● Modular design to support all three main
debuggers and platforms
- Windows/WinDBG, Linux/gdb, OS X/lldb

● *_engine modules that wrap the debugger-
provided backends and expose the same APIs
- Specific one imported at runtime with the 'as'

Python keyword

● *_driver modules for debugger-specific UI glue-
code

shadow design

New features

● shadow includes a utility (symhex) to parse PDB files
and generate a Python pickle file with symbol
metadata
- Classes/structs/unions and their sizes
- Vtable or not

● symhex uses the comtypes module to parse the PDB

● Generated pickle file then usable from shadow

● More efficient search for specific things, like
particularly-sized objects on the jemalloc heap

● Nursery location, size and status

Gather, shadow!

Exploitation

Exploitation goals

● The times of generic exploitation methodologies are
mostly gone
- We can use abstraction and reusable primitives to tackle

increased complexity – see my “Project Heapbleed” talk

● Goal: define an exploitation technique that can be re-used
in as many as possible Firefox bugs/bug classes
- Leak of xul.dll's base
- Leak of our location in memory
- Arbitrary leak would be useful
- EIP control

● Our grimoire consists of:
- Knowledge of jemalloc and its predictability
- Knowledge of Firefox internals
- shadow invocations ;)

Typed arrays

● Very useful JavaScript feature, allow us to situate on
the heap arbitrary sized constructs of controlled
content (to arbitrary byte granularity)

● Unfortunately the actual content (data) and the
corresponding metadata are no longer contiguous in
memory

● The GC tenured heap and the jemalloc heap keep
these separated, even when trying to force this

● However, typed arrays remain very useful

Typed arrays

Typed arrays Uint32Array object

Uint32Array length

ArrayObjects inside ArrayObjects

● Interesting characteristics of ArrayObject objects
- We can control their size
- We have partial control of their contents (since they use

the jsval 64-bit representation we have seen)
- We can spray with ArrayObjects without problems
- We can move them to jemalloc-managed heap (after

filling the nursery)

● So, we spray ArrayObjects as elements of an ArrayObject
(container)
- When the elements of the container are moved to the

jemalloc heap they bring with them ArrayObject contents
and metadata

ArrayObjects inside ArrayObjects

● Create a container ArrayObject
- Initially allocated on the nursery

● As we add elements (ArrayObjects), a minor (nursery)
GC happens
- The container ArrayObject is moved from the

nursery to the tenured heap

● If (2 + container.capacity) >= 17 then the container's
elements (ArrayObjects themselves) are moved to the
jemalloc heap
- Contents plus some metadata

● The container remains on the tenured heap for the
rest of its lifetime

Nursery Tenured

Nursery Tenured

Before minor GC

After minor GCnext free

Temporary
object

ArrayObject
+ elements
(ArrayObjects)

Free memory
jemalloc

elements_ pointer

var a = new Array();

next free

a[1] = new Array();

...

a[15] = new Array();

...

...

ArrayObjects inside ArrayObjects

nursery size (16 MB)

ArrayObjects inside ArrayObjects

ArrayObject metadata

ArrayObject metadata

jemalloc feng shui
● We can move our ArrayObjects off the nursery to the jemalloc heap

along with their metadata

● We know that we can poke holes in the jemalloc heap

● We know how to trigger a garbage collection
- To actually make the holes reclaimable

● We can reclaim these holes (since jemalloc is LIFO)

● Let's assume we have a heap overflow vulnerability in a specific-
sized DOM object

jemalloc feng shui

jemalloc feng shui

xul!mozilla::dom::SVGImageElement::`vftable'

ArrayObject

SVGImageElement

Corrupted ArrayObject

Corrupted ArrayObject

corrupted
ArrayObject
metadata *

* only initializedLength and length (capacity not required)

[0]
[2]

 [1]
 [3]

 [29]
[30]

indexing into
SVGImageElement

xul.dll base leak

● Subtraction of known offset from the leaked vtable pointer

Our location in memory

corrupted
ArrayObject

metadata

index 35 into
SVGImageElement

EIP control

setAttribute()
specific

Arbitrary leak

● We can use a fake (non-inline) JSString object
- Pointed to by a fake string-type jsval indexed via our

corrupted ArrayObject

● We cannot use our corrupted ArrayObject to write a
fake string-type jsval
- There is no IEEE-754 double that corresponds to a

32-bit representation value > 0xFFF00000

● We can use the reliability and the LIFO operation of
jemalloc to create more complex heap arrangements
- That help us solve this problem
- We will add typed arrays to utilize their fully

controlled content

Arbitrary leak heap arrangement

4

Arbitrary leak heap arrangement

ArrayObject

SVGImageElement

Fake JSString

arbitrary address to leak from

Arbitrary leak

SVGImageElement

corrupted
ArrayObject

fake
string-type

jsval

fake
JSString

arbitrary address to leak from

Fake JSString re-use

new arbitrary
address to
leak from

Additional exploitation notes

● We have a re-usable arbitrary leak primitive + we
know the base of xul.dll
- We can dynamically search for ROP gadgets and

construct our ROP chain at exploit runtime (in
JavaScript)

● Use-after-free bugs
- Reclaim the jemalloc region left by the freed

object with a typed array (Uint32Array)
- Use the fake object's methods to overwrite the

metadata of a neighboring sprayed ArrayObject
- Apply previous methodology

Spray reliability

● While working on heap spray reliability for an exploit,
found that WinDBG skews results
- Even with -hd (debug heap disabled)

● Patched xul.dll to add an 'int 3' instruction at the start of
Math.atan2()

● Sysinternals' procdump to launch Firefox with a jemalloc
heap spray; calls Math.atan2() after the spray

● Python driver script to automate:
- Running a number of iterations
- Collecting crash dumps
- Analyzing them with cdb/pykd/shadow

Spray reliability

● Spraying with ArrayObjects of 30 elements / 240 bytes
- Targeting the 256-sized jemalloc run

● Quite small spray of just ~17 MB
- That's 66,000 ArrayObjects
- Doesn't even qualify as a spray ;)

● Windows 7 x86-64 (known VirtualAlloc() issues)
- But remember that latest Firefox for Windows is x86

● With ~90% probability we get a 256-sized jemalloc run at
0x10b01000 (first ArrayObject at 0x10b01100, etc)
- Nursery at 0x09b00000

● VirtualAlloc() for both the nursery and jemalloc chunks

References

● https://dxr.mozilla.org/mozilla-central/source/
● https://bugzilla.mozilla.org/
● Pseudomonarchia jemallocum, argp, huku, Phrack

2012
● Owning Firefox's heap, argp, huku, Black Hat USA

2012
● A tale of two Firefox bugs, Fionnbharr Davies, Ruxcon

2012
● VUPEN Pwn2Own Firefox CVE-2014-1512,

www.vupen.com, 2014
● The garbage collection handbook, Richard Jones,

2011
● http://blogs.adobe.com/security/2012/06/inside-flash-

player-protected-mode-for-firefox.html
● Project heapbleed, argp, ZeroNights 2014

https://dxr.mozilla.org/mozilla-central/source/

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

