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Who am I

● Researcher at CENSUS S.A.
- Vulnerability research, reverse engineering, 

exploit development, binary & source code 
auditing, tooling for these

● Before CENSUS I was a postdoc at Trinity College 
Dublin
- Designing, implementing, attacking network 

security protocols

● Heap exploitation obsession, both userland and 
kernel



  

Outline (the menu ;)

● Previous work on Firefox 
exploitation

● Firefox & SpiderMonkey 
internals (>= release 34)

● Firefox exploitation mitigation 
features (current and 
planned)

● The shadow (over Firefox) 
WinDBG/pykd utility

● Exploitation methodologies 
(and demos ;)



  

Previous work

● Owning Firefox's heap 
(2012)

● A tale of two Firefox bugs 
(2012)

● VUPEN Pwn2Own Firefox 
use-after-free (2014)



  

Owning Firefox's heap

● Applied mine and huku's Phrack paper, 
Pseudomonarchia jemallocum (2012), to Firefox

● jemalloc metadata corruption attacks for Firefox

● jemalloc heap arrangement with unicode strings

● Example of exploiting CVE-2011-3026 (libpng) on 
Firefox via jemalloc heap manipulation

● unmask_jemalloc gdb/Python tool for Firefox Linux 
and OS X



  

A tale of two Firefox bugs

● Fionnbharr Davies' work on exploiting:
- CVE-2011-2371 reduceRight()
- CVE-2012-0469 IDBKeyRange use-after-free

● Internals of SpiderMonkey
- Representations of JavaScript objects in memory 

have changed
- Metadata of these objects not reachable from 

their user-controlled data

● Some jemalloc notes



  

VUPEN Pwn2own Firefox

● Use-after-free of a 0x2000-sized object

● Heap spray of 0x2000-sized ArrayBuffer (typed 
array) objects to take control of the freed object 
and modify a neighboring sprayed ArrayBuffer 
object's length

● Again, data of typed array objects no longer with 
their metadata

● No arbitrary-sized typed array object 
metadata+data sprays



  

VUPEN Pwn2own Firefox



  

Firefox internals

● SpiderMonkey JavaScript engine
- Native JS values (jsvals): string, number, 

object, boolean, null, undefined
- The runtime must be able to query a jsval's 

type (as stored in a variable or an object's 
attribute)

● 64-bit representation
- Doubles are full 64-bit IEEE-754 values
- Others use 32 bits for tagging the type and 32 

bits for the actual value



  

jsval representation

object

string

integer

double



  

SpiderMonkey IEEE-754

● If tag value is > 0xFFFFFF80 then the 64 bit 
value is interpreted as a jsval of the 
corresponding type

● If tag value is <= 0xFFFFFF80 then the 64 bit 
value is interpreted as an IEEE-754 double

● Important note: There is no IEEE-754 double 
that corresponds to a 32-bit representation 
value > 0xFFF00000
- These are defined as NaN



  

JSObject

● Non-jsval, non-native, complex objects
- In essence mappings from names (properties) to values

● JSObject members:
- *shape_: structural description to avoid dictionary 

lookups from property names to slots_ array indexes
- *type_: the type (internal) of the JSObject
- *slots_: named properties array
- *elements_: if ArrayObject, jsval elements
- flags: how are data written to elements_, and other 

metadata
- initializedLength: initialized elements, <= capacity for 

non-arrays, <= length for ArrayObjects
- capacity: number of allocated slots
- length: used only for ArrayObjects



  

An ArrayObject JSObject

shape_

flags

type_ slots elements

initLength capacity length

new
elements
HeapSlot

old
elements
HeapSlot



  

JSString (0xffffff85)

● JSInlineString
- On 32-bit platforms: 7 ASCII, 3 unicode
- On 64-bit platforms: 15 ASCII, 7 unicode

● test_array[7] = “Hello, Firefox”; // len == 14 == 0xe

flags length inline content ...



  

JSString (0xffffff85)

flags length content



  

Generational GC

● A new, generational garbage collection (GGC) was 
enabled by default since Firefox release 32

● Separate heap on which most SpiderMonkey objects are 
allocated – nursery

● There is also the (old) normal GC heap, also called major 
heap – tenured

● When the nursery becomes full (or some other event 
happens) we have the so-called minor GC pass
- Short-lived temporary nursery objects are collected
- Survivors (objects reachable from roots) are moved to 

the tenured heap



  

Generational GC (cont.)

● GC root: A reachable, alive, object in the heap graph

● Once an object is moved to the tenured heap, it is 
checked for outgoing pointers to nursery objects
- These are moved from the nursery to tenured as 

well
- Iterative process until all reachable objects are 

moved
- The nursery space they occupied is set to available

● Impressive performance gains; most JavaScript 
allocations are indeed short-lived



  

Nursery Tenured

Nursery Tenured

Before minor GC

After minor GC

First unallocated 
nursery byte

First unallocated 
nursery byte

Temporary object Survivor object Free memory



  

SpiderMonkey runtime

● SpiderMonkey is single-threaded by default

● However, workers can be launched/created

● Each worker has its own JS runtime

● One separate GGC heap (nursery + tenured) per 
JS runtime

● JS runtimes do not share heap memory, i.e one 
cannot access objects allocated by the other



  

GC nursery heap

● VirtualAlloc (or mmap on Linux) of 16MB (hardcoded)

● Basically a bump allocator; a pointer is maintained that 
points to the first unallocated byte in the nursery
- To make an allocation of X bytes, first there is a 

check if this fits in the nursery
- If it does, X is added to the pointer and its previous 

value is returned to service the allocation request

● If the new object doesn't fit, its slots are allocated on 
the jemalloc-managed heap and the object itself on 
the nursery
- A minor GC will move the object to the tenured heap
- Its slots will remain on the jemalloc heap



  

GC tenured heap

● The normal (old) GC heap – more or less same 
implementation too

● Some allocations go directly to the tenured heap
- Known long-lived objects, e.g. global objects
- Function objects (due to JIT requirements)
- Object with finalizers (due to the way that the 

nursery minor GC works) – most DOM objects

● The GC heap has its own metadata (and 
algorithms) to manage memory
- Distinct from jemalloc



  

jemalloc

● A bitmap allocator designed for performance and not 
primarily memory utilization
- Major design goal to situate allocations contiguously 

in memory
- Currently at major version 3

● The latest Firefox release (38.0.5) includes a forked 
version from major release 2
- Called mozjemalloc; mostly the same
- Firefox is moving (nightly) to upstream jemalloc3

● Used in Firefox for allocations that become too big for 
the tenured heap
- Some allocations go directly to the jemalloc heap



  

jemalloc architecture



  

jemalloc architecture



  

Some jemalloc notes

● Bins are used to manage/locate free regions
- 37 bins in Firefox: 2, 4, 8, 16, 32, …, 512, 1024, 2048
- > 2048: large and huge – not covered by this talk
- Each bin is associated with several runs

● Allocation requests are rounded up and assigned to a bin (size 
class)
- Lookup for a run with a free region
- If none found, a new run is allocated

● Same-sized objects of different types contiguous in memory

● LIFO: a free followed by GC and an allocation of the same size 
most likely ends up in the freed region

● Free jemalloc regions are sanitized to mitigate uninitialized 
memory leaks



Nursery Tenured

Nursery Tenured

Before minor GC

After minor GC

Nursery doesn't have 
free memory for 
JSObject + its slots

First 
unallocated 
nursery byte

Temporary 
object

JSObject
+ slots

Free memory
jemalloc

slots_ pointer

JSObject
allocation
request



  

Hardening features

● PresArena

● Heap partitioning 

● Sandbox

● ASLR, DEP, GS (all DLLs and firefox.exe)

● Heap spray protection (only for strings currently)

● JIT hardening: nope ;)

● Garbage collection (not on demand)



  

PresArena

● Gecko's specialized heap for CSS box objects

● When a CSS box object is freed, the free PresArena heap 
“slot” it is added to a free list based on its type
- Separate free lists for each CSS box object type

● A new allocation is serviced from the free list of its type
- Exploitable UAFs only possible via same-object-type 

trickery (attributes' values etc)

● PresArena also services certain related but non-CSS box 
objects
- These use per size free lists
- UAFs of different object types are possible here



  

Heap partitioning

● Plans for separate heap partitions for:
- DOM nodes (like IE and Chrome)
- String data
- Typed arrays

● Considered Chromium's PartitionAlloc
- Seems like they rejected it due to performance 

reasons

● Going for jemalloc3
- Looks like they plan to implement heap 

partitioning for jemalloc3 and submit it upstream



  

Sandbox

● Content process sandbox
- Based on Chromium sandbox's code
- Parent process, i.e. broker
- Content process, i.e. target
- IPC: IPDL, MessageManager (here is where you look for 

bugs ;)
- Current state: quite permissive whitelist
- Policies at sandboxBroker.cpp:

SandboxBroker::SetSecurityLevelForContentProcess()

● Gecko Media Plugin (GMP) sandbox
- For Gecko processes launched for media playback
- More restrictive whitelist (same file as above):

SandboxBroker::SetSecurityLevelForGMPlugin()



  

Flash sandbox

● Flash is an out-of-process plugin (OOPP)

● Currently sandboxed by its own “protected mode”
- Low integrity process
- Restricted access token capabilities
- Job restrictions (no launching of new processes)

● Plans to not enable the protected mode in the 
future
- Due to stability problems
- Implement a Firefox-specific Flash sandbox
- Again based on Chromium sandbox's code



  

Garbage collection

● No unprivileged JS API to trigger a GC on demand
- We need this to make favorable heap layouts

● Different types of GC in SpiderMonkey

● Here's how you can find ways to trigger a GC
- Just read the code ;)



  

The shadow over Firefox



  

shadow

● Re-designed and enhanced unmask_jemalloc

● Modular design to support all three main 
debuggers and platforms
- Windows/WinDBG, Linux/gdb, OS X/lldb

● *_engine modules that wrap the debugger-
provided backends and expose the same APIs
- Specific one imported at runtime with the 'as' 

Python keyword

● *_driver modules for debugger-specific UI glue-
code



  

shadow design



  

New features

● shadow includes a utility (symhex) to parse PDB files 
and generate a Python pickle file with symbol 
metadata
- Classes/structs/unions and their sizes
- Vtable or not

● symhex uses the comtypes module to parse the PDB

● Generated pickle file then usable from shadow

● More efficient search for specific things, like 
particularly-sized objects on the jemalloc heap

● Nursery location, size and status



  

Gather, shadow!



  

Exploitation



  

Exploitation goals

● The times of generic exploitation methodologies are 
mostly gone
- We can use abstraction and reusable primitives to tackle 

increased complexity – see my “Project Heapbleed” talk

● Goal: define an exploitation technique that can be re-used 
in as many as possible Firefox bugs/bug classes
- Leak of xul.dll's base
- Leak of our location in memory
- Arbitrary leak would be useful
- EIP control

● Our grimoire consists of:
- Knowledge of jemalloc and its predictability
- Knowledge of Firefox internals
- shadow invocations ;)



  

Typed arrays

● Very useful JavaScript feature, allow us to situate on 
the heap arbitrary sized constructs of controlled 
content (to arbitrary byte granularity)

● Unfortunately the actual content (data) and the 
corresponding metadata are no longer contiguous in 
memory

● The GC tenured heap and the jemalloc heap keep 
these separated, even when trying to force this

● However, typed arrays remain very useful



  

Typed arrays



  

Typed arrays Uint32Array object

Uint32Array length



  

ArrayObjects inside ArrayObjects

● Interesting characteristics of ArrayObject objects
- We can control their size
- We have partial control of their contents (since they use 

the jsval 64-bit representation we have seen)
- We can spray with ArrayObjects without problems
- We can move them to jemalloc-managed heap (after 

filling the nursery)

● So, we spray ArrayObjects as elements of an ArrayObject 
(container)
- When the elements of the container are moved to the 

jemalloc heap they bring with them ArrayObject contents 
and metadata



ArrayObjects inside ArrayObjects

● Create a container ArrayObject
- Initially allocated on the nursery

● As we add elements (ArrayObjects), a minor (nursery) 
GC happens
- The container ArrayObject is moved from the 

nursery to the tenured heap

● If (2 + container.capacity) >= 17 then the container's 
elements (ArrayObjects themselves) are moved to the 
jemalloc heap
- Contents plus some metadata

● The container remains on the tenured heap for the 
rest of its lifetime



Nursery Tenured

Nursery Tenured

Before minor GC

After minor GCnext free

Temporary 
object

ArrayObject
+ elements
(ArrayObjects)

Free memory
jemalloc

elements_ pointer

var a = new Array();

next free

a[1] = new Array();

...

a[15] = new Array();

...

...



  

ArrayObjects inside ArrayObjects

nursery size (16 MB)



  

ArrayObjects inside ArrayObjects

ArrayObject metadata

ArrayObject metadata



  

jemalloc feng shui
● We can move our ArrayObjects off the nursery to the jemalloc heap 

along with their metadata

● We know that we can poke holes in the jemalloc heap

● We know how to trigger a garbage collection
- To actually make the holes reclaimable

● We can reclaim these holes (since jemalloc is LIFO)

● Let's assume we have a heap overflow vulnerability in a specific-
sized DOM object



  

jemalloc feng shui



  

jemalloc feng shui

xul!mozilla::dom::SVGImageElement::`vftable'

ArrayObject

SVGImageElement



  

Corrupted ArrayObject



  

Corrupted ArrayObject

corrupted
ArrayObject
metadata *

* only initializedLength and length (capacity not required)

[0]
[2]

  [1]
  [3]

  [29]
[30]

indexing into
SVGImageElement



  

xul.dll base leak

● Subtraction of known offset from the leaked vtable pointer



  

Our location in memory

corrupted
ArrayObject

metadata

index 35 into
SVGImageElement



  

EIP control

setAttribute()
specific



  

Arbitrary leak

● We can use a fake (non-inline) JSString object
- Pointed to by a fake string-type jsval indexed via our 

corrupted ArrayObject

● We cannot use our corrupted ArrayObject to write a 
fake string-type jsval
- There is no IEEE-754 double that corresponds to a 

32-bit representation value > 0xFFF00000

● We can use the reliability and the LIFO operation of 
jemalloc to create more complex heap arrangements
- That help us solve this problem
- We will add typed arrays to utilize their fully 

controlled content



  

Arbitrary leak heap arrangement

4



  

Arbitrary leak heap arrangement

ArrayObject

SVGImageElement



  

Fake JSString

arbitrary address to leak from



  

Arbitrary leak

SVGImageElement

corrupted
ArrayObject

fake
string-type

jsval

fake
JSString

arbitrary address to leak from



  

Fake JSString re-use

new arbitrary
address to
leak from



  

Additional exploitation notes

● We have a re-usable arbitrary leak primitive + we 
know the base of xul.dll
- We can dynamically search for ROP gadgets and 

construct our ROP chain at exploit runtime (in 
JavaScript)

● Use-after-free bugs
- Reclaim the jemalloc region left by the freed 

object with a typed array (Uint32Array)
- Use the fake object's methods to overwrite the 

metadata of a neighboring sprayed ArrayObject
- Apply previous methodology



  

Spray reliability

● While working on heap spray reliability for an exploit, 
found that WinDBG skews results
- Even with -hd (debug heap disabled)

● Patched xul.dll to add an 'int 3' instruction at the start of 
Math.atan2()

● Sysinternals' procdump to launch Firefox with a jemalloc 
heap spray; calls Math.atan2() after the spray

● Python driver script to automate:
- Running a number of iterations
- Collecting crash dumps
- Analyzing them with cdb/pykd/shadow 



  

Spray reliability

● Spraying with ArrayObjects of 30 elements / 240 bytes
- Targeting the 256-sized jemalloc run

● Quite small spray of just ~17 MB
- That's 66,000 ArrayObjects
- Doesn't even qualify as a spray ;)

● Windows 7 x86-64 (known VirtualAlloc() issues)
- But remember that latest Firefox for Windows is x86

● With ~90% probability we get a 256-sized jemalloc run at 
0x10b01000 (first ArrayObject at 0x10b01100, etc)
- Nursery at 0x09b00000

● VirtualAlloc() for both the nursery and jemalloc chunks
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Questions
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