

Straight outta VMware:

Modern exploitation of the SVGA device
for guest-to-host escape exploits

Zisis Sialveras (zisis@census-labs.com)

Blackhat Europe 2018

www.census-labs.com

mailto:zisis@census-labs.com

WHOAMI

•Computer security researcher at CENSUS
•RE, exploit development, vulnerability research

•Electrical & Computer Engineering at A.U.Th

•Used to mess with knowledge-based fuzzers

•My twitter handle is @_zisis

AGENDA

•VMware architecture
•Overview of VMware and SVGA device
• SVGA3D communication protocol

•Exploitation
• Exploitation primitives

• Heap spray, information leak, code execution

•Real world demo of VMSA-2017-0006

•Conclusion / Q&A

VMWARE ARCHITECTURE

GRAPHICS DEVICE
ARCHITECTURE

Host kernel spaceHost user space

HOST KERNEL

PHYSICAL
DEVICE

VMX

SVGA
BACKEND

(RENDERER)
SVGA

FRONTEND

SVGA FIFO
(MMIO)

SVGA REGISTERS
(PORT I/O)

Guest kernel space

VMWARE
GUEST
KERNEL
DRIVER

SVGA THREAD

•The frontend interface communicates with the guest
• SVGA3D protocol

•The backend interface communicates with the host
•On a Windows10 host DX11Renderer is enabled.

•VMX spawns a thread dedicated for graphics (SVGA
thread) which processes SVGA3D commands from
• SVGA FIFO
•Command buffers

SVGA DEVICE
GUEST POINT OF VIEW

•Common PCI device

•BAR0: I/O port value

•BAR1: physical address of
global framebuffer

•BAR2: physical address of
the SVGA FIFO

SVGA FIFO

•Explained in detail by Kostya Kortchinsky (Cloudburst,
BHUSA09)

•SVGA FIFO is a MMIO region

•Divided in two partitions
• FIFO registers
• FIFO data

SVGA FIFO
SUBMIT COMMAND

•Place an SVGA3dCmdHeader in
FIFO data section

•Command’s arguments must be
placed after the header

•Set to SVGA_FIFO_NEXT_CMD
the offset of the new command
(relative to the FIFO data
section)

SVGA REGISTERS
PORT I/O

•SVGA device exposes a few registers

•Can be accessed using the in, out instructions

COMMAND BUFFERS

•Two registers must be set to submit a command buffer
• SVGA_REG_COMMAND_HIGH: upper 32-bit of physical

address
• SVGA_REG_COMMAND_LOW: lower 32-bit of physical

address

•More info can be found in Linux open-source VMware
driver

SVGA3D
PROTOCOL

OBJECT TABLES

•Object tables are used to hold
information of SVGA3D objects

•Available objects
•MOB, surface, context, shader,

DXcontext, screentarget

•Stored in guest memory

•PPN = Page Physical Number
• (physaddr >> 0xC)

MEMORY OBJECTS

•MOBs are stored in guest
memory as well

•They contain raw data used for
initialization of the (host-side)
SVGA objects.

COMMON SVGA OBJECTS

•Objects
•Context
•DXContext
• Shader
• Surface
• Screentarget

•Operations
•Define
•Bind
•Destroy
•Readback

DEFINE CONTEXT

BIND CONTEXT

DESTROY CONTEXT

EXPLOITATION
PRIMITIVES

HEAP
SPRAYING

SHADERS

•Define a shader

•Define a MOB
•MOB will contain shader’s data (i.e

bytecode)

•Bind the shader with the MOB

•Set shader to a context
•VMware will allocate a buffer on the

host side to store the bytecode

ANALYSIS OF
SVGA_3D_CMD_SET_SHADER

ANALYSIS OF
SVGA3D_CMD_SET_SHADER

HEAP SPRAYING SUMMARY

•On a single SVGA_3D_SET_SHADER command two
allocations of the requested size will be performed
• The first one is freed immediately
• The latter is freed when the guest destroys that shader

•VMware keeps track of the total shader allocation size.
•Must be <= 8MB

•Guest is able to define and set as many shaders fit in
the shader object table

EXPLOITATION
PRIMITIVES

SURFACES & RESOURCE
CONTAINERS

INFORMATION LEAK &
CODE EXECUTION

SURFACE OBJECT

• Surface definition
• All host VRAM resources, including

2D textures, 3D textures, cube
environment maps, render targets
and vertex/index buffers are
represented using a homogeneous
surface abstraction.

• Surface is an object of the frontend
interface

RESOURCE CONTAINERS

•Resource container is an object of the backend
(DX11Renderer)

• It is often associated with surface object

SVGA_Surface

UINT32 RCIndex

ResourceContainer *pRC

ResourceContainer *pRC

ResourceContainer *pRC

ResourceContainer *pRC

GlobalResourceContainerList

RESOURCE CONTAINER

• In VMware 14 there are ten different
types of RC
•We will focus on type 1

•Type depends on the arguments that
the surface was defined

•Likewise to other SVGA objects,
VMware creates a RC only when they
are going to be used (lazy allocation)

SURFACE COPY

• SVGA_3D_CMD_SURFACE_COPY
copies parts (three dimensional
boxes) from the source to the
destination surface

MAP SUBRESOURCE

RC->GETDATABUFFER FUNCPTR

ATTACKING VMWARE

• Resource containers are very
attractive for an attacker, since
they

• can be allocated multiple
times

• contain pointers to heap

• contain dimension fields

• contain function pointers

ATTACKING VMWARE

•Assume having a memory corruption bug

•Consider the following surface
•Width = 0x45
•Height = 0x2
•Depth = 0x1
• Surface format = SVGA3D_A4R4G4B4

•Since the surface format requires two bytes for each
pixel, the total size of the RC->DataBuffer will be
0x45 * 0x2 * 0x1 * 2 = 0x114 bytes.

ATTACKING VMWARE

•Corrupt width of RC with a greater value
• Rowpitch will also be affected

•Box must be in boundaries due to the checks at frontend

•DataPtr will point after the end of the buffer

AVOIDING THE PITFALL

•MyDX11Resource_MapSubresourceBox will refresh the
contents of the DataBuffer with the contents of the
GPU
• This will trash the data that we want to write back to the

guest

•This can be avoided by corrupting and decreasing the
value of height
•RC->GetDataBuffer() will silently fail but the surface copy

command will continue

INFORMATION LEAK AND
CODE EXECUTION

• If a new RC is placed after the DataBuffer we can leak
its function pointers
• LFH chunks are placed next to each other

•Once the attacker has vmware-vmx base address,
he/she can corrupt the RC->GetDataBuffer function
pointer and issue a the surface-copy command once
again

ATTACKING VMWARE SUMMARY

Width Height

GetDataBuffer

To leak data back to
guest, increase the
width and decrease
the height

Once the base
address is known,
corrupt the
GetDataBuffer
function pointer

THE BUG

VMSA-2017-0006

•Multiple vulnerabilities located in SM4 bytecode parser

•Fixed at version 12.5.5 of VMware
• I patched vmware-vmx.exe to reintroduce the vulnerability

on 14.1.3

• I developed an escape exploit which consists of two
parts (userland application, kernel driver)

DETAILS OF THE
VULNERABILITIES

•A malicious DXShader must be set to a DXContext
(SVGA3D_CMD_DX_SET_SHADER)

•A call to SVGA3D_CMD_DX_DRAW will trigger the
shader bytecode parser

•During the draw call a buffer of 0x26D80 be allocated
and values from the bytecode
•will be used as index to access that buffer
•will be stored in that buffer

VULNERABLE VERSION 12.5.4
DCL_CONSTANTBUFFER (59H)

rcx points to buffer (0x26d80)
r8 and rax values are taken directly
from shader bytecode

PATCHED VERSION 12.5.5
DCL_CONSTANTBUFFER (59H)

Edx value is taken from bytecode
Patch: edx must be below 0x10

VULNERABLE VERSION 12.5.4
DCL_INDEXRANGE (5B)

Values of r8, r8,
eax are taken
from the shader
bytecode

PATCHED VERSION 12.5.5
DCL_INDEXRANGE (5B)

Patch: eax (taken from
bytecode) must be less
than 0x10

THE EXPLOIT

DRIVER ENTRY

•Use HAL to retrieve BARs

•Required for port I/O and MMIO for the SVGA device

INIT_SVGA_IOCTL

USERLAND
APPLICATION

KERNEL
DRIVER

INIT_SVGA_IOCTL

SETTING UP THE SVGA

•SVGA FIFO initialization

•Object table definition

USERLAND
APPLICATION

KERNEL
DRIVER

INIT_SVGA_IOCTL

Config is done, graphics are dead
(black screen)

LEAK_VMX_ADDR_IOCTL

LEAK_VMX_ADDR_IOCTL

PREPARE MEMORY LAYOUT

•Allocate a big chunk that will be occupied
later by the allocation at
SVGA3D_CMD_DX_DRAW

•Repeatedly allocate a shader of size 0x150

0x26D80

PREPARE MEMORY LAYOUT

•Allocate a big chunk that will be occupied
later by the allocation at
SVGA3D_CMD_DX_DRAW

•Repeatedly allocate a shader of size 0x150

0x26D80

LFH 0x150

PREPARE MEMORY LAYOUT

•Replace all 0x150-size heap chunks with RC1

0x26D80

LFH 0x150 (RC1)

PREPARE MEMORY LAYOUT

PREPARE MEMORY LAYOUT

0x26D80

LFH 0x150 (RC1)

•Databuffers

•ResourceContainer type 0

LFH 0x140 (RC0)

FREE THE SHADER

free

LFH 0x150 (RC1)LFH 0x140 (RC0)

TRIGGER THE VULNERABILITY

0x26D80
Vulnerable

buffer

LFH 0x150 (RC1)LFH 0x140 (RC0)

COPY SURFACES BACK TO GUEST

•Copy surfaces to guest
until encounter the
corrupted RC1 free

LFH 0x150 (RC1)LFH 0x140 (RC0)

COPY THE FUNCTION POINTER

•Corrupt RC->GetDataBuffer
with the first ROP gadget 0x26D80

Vulnerable
buffer

LFH 0x150 (RC1)LFH 0x140 (RC0)

HONEY, I DEFEATED ASLR

•Payload is stored in a buffer allocated by RPC interface

•Not much time to talk about RPC (google for more info)

• In short, guest user can allocate a buffer with
controllable contents on the host process

•The address of the buffer is stored in a global variable
(data section)
• Since base address is known, we can use this ;)

USERLAND
APPLICATION

KERNEL
DRIVER

INIT_SVGA_IOCTL

Config is done, graphics are dead
(black screen)

LEAK_VMX_ADDR_IOCTL

YAY, WE GOT THE BASE ADDRESS

vmware-vmx address returned,
RC1->GetDataBuffer is corrupted

with the first ROP gadget

USERLAND
APPLICATION

KERNEL
DRIVER

INIT_SVGA_IOCTL

Config is done, graphics are dead
(black screen)

LEAK_VMX_ADDR_IOCTL

YAY, WE GOT THE BASE ADDRESS

vmware-vmx address returned,
RC1->GetDataBuffer is corrupted

with the first ROP gadget
RPC

Place the payload
on the heap of

the host

USERLAND
APPLICATION

KERNEL
DRIVER

INIT_SVGA_IOCTL

Config is done, graphics are dead
(black screen)

LEAK_VMX_ADDR_IOCTL

ESCAPE!

vmware-vmx address returned,
RC1->GetDataBuffer is corrupted

with the first ROP gadget
RPC

Place the payload
on the heap of

the host

ESCAPE_IOCTL

DEMO

BLACK HAT SOUND BYTES

•Brief high level overview of the VMware architecture
and the SVGA device

•Reusable exploitation primitives for VMware
•Heap spray, information leak and code execution

•SVGA is amazingly complex so expect more bugs

•VMware Workstation 15 has been released recently
•A few things have changed (CFI mitigation)

REFERENCES

• Cloudburst - Kostya Kortchinsky, BHUSA 2009

• GPU Virtualization on VMware’s Hosted I/O Architecture - Micah Dowty, Jeremy Sugerman

• Wandering through the Shady Corners of VMware Workstation/Fusion - ComSecuris, Nico
Golde, Ralf-Philipp Weinmann

• L'art de l'evasion: Modern VMWare Exploitation Techniques - Brian Gorenc, Abdul-Aziz
Hariri, Jasiel Spelman, OffensiveCon 2018

• The great escapes of Vmware: A retrospective case study of Vmware guest-to-host escape
vulnerabilities – Debasish Mandal & Yakun Zhang, BHEU 2017

• Linux kernel driver (vmwgfx) is a treasure!

• Special thanks fly to: Nick Sampanis, Aris Thallas, Sotiris Papadopoulos

