
vs com.apple.security.sandbox

PATROKLOS ARGYROUDIS
CENSUS S.A.

argp@census-labs.com
www.census-labs.com

Who am I

● Computer security researcher at CENSUS S.A.
○ Vulnerability research, RE, exploit development

● Before CENSUS: PhD and Postdoc at TCD doing netsec

● Heap exploitation obsession (userland & kernel)

● Wrote some Phrack papers

Introduction

● This talk is on reverse engineering the iOS
com.apple.security.sandbox kernel extension (aka
sandbox.kext)

● iOS-specific unless otherwise noted

● Tested on up to latest stable iOS: 12.1.4 (build 16D57)
○ And latest beta: 12.2 beta 5 (build 16E5223a)

Outline

● Sandbox overview

● iOS sandbox implementation details

● Sandbox.kext reversing engineering

● Results (findings, attack surface, sandbox escape notes)

Sandbox overview

● A sandbox is a technology that protects an underlying
system, by limiting the operations an app that runs on the
system can perform
○ White-list, obviously, so sandbox technologies specify

what is allowed (policies or profiles)

● On iOS the sandbox protects mainly two resources of the
underlying system
○ The kernel and its drivers (kernel extensions)
○ IPC (XPC, NSXPC, etc.) system services
○ Others too (e.g. parts of the filesystem)

Sandbox overview

Sandbox vs privilege escalation

● Apple introduced the sandbox in iOS 2.0 and relies on it a lot
for limiting privilege escalation and post-exploitation
○ Every iOS release keeps reducing the surface accessible

from within the sandbox
○ Sandbox escape, then kernel interface to LPE

● Apps are placed in a container (app sandbox) by default
○ They don't need to do anything code-wise (or in any other

way)
○ AMFI (Apple Mobile File Integrity) for code signing and

entitlements (not discussed - out of scope)

iOS sandbox implementation

● Based on the TrustedBSD (FreeBSD) MACF (Mandatory
Access Control Framework)
○ MAC: security policy is centrally controlled by a security

policy administrator; Apple in our case
○ Users do not have the ability to override the policy and,

for example, grant access to files that would otherwise be
restricted

○ Not even ones they own/created

● Enforced by the kernel

Example: IOKit properties
● IOKit drivers allow the getting/setting of their properties from

userland
○ Userland API leads to kernel function

is_io_registry_entry_get_property

● MACF specific code addition (#ifdef CONFIG_MACF)

mac_iokit_check_get_property

● One example of an entry function to MACF for making an
access control decision (IOKit get property here)

callback caller’s
credentials driver property name

mpo_iokit_check_get_property

● Actual implementation of the check; policy hook or operation
○ MAC_CHECK macro checks the operation against policy

modules; the sandbox is one of them (the other is AMFI)
○ Struct that holds all policy hooks (operations)
○ Not the same on macOS and iOS (XNU, kexts)

● const static struct mac_policy_ops policy_ops (macOS):

Sandbox profiles

● Each hook implements a check (implemented in the kernel)
○ Specifically called at certain code points as we saw
○ These hooks/operations are used in profiles
○ Profiles specify allowed operations and conditions on

them

● During the kernel’s (or a kext’s) initialization
mac_policy_register is called
○ Registers hooks (operations) from the mac_policy_ops

struct
○ Calls hook_policy_init which loads the sandbox profiles

iOS sandbox implementation

● Closed source both on iOS and on macOS
○ Sandbox.kext binary on macOS has symbols
○ Policies (profiles) on macOS’ filesystem:

/System/Library/Sandbox/Profiles
○ Sandbox Profile Language (SBPL) - (Tiny)Scheme
○ No container.sb there

● On iOS profiles compiled and packed in the kext itself
○ Sandbox.kext binary has no symbols
○ Only some strings (that can aid symbolization/RE)

Operations

● An operation is some action that an app wants to perform
that is checked by the sandbox
○ Abstract names (labels) corresponding to MACF

callbacks
○ Callbacks defined in security/mac_policy.h
○ Implemented in the sandbox kext

iokit-get-properties
label / operation

CONFIG_MACF callbacks

Policies (profiles) -- macOS

● MACF callbacks check against loaded profiles
○ How are they loaded?

Policies (profiles) -- iOS

_profile_create

● X0: pointer to heap (sandbox profile context buffer)
● X1: __const address (kext Mach-O) with packed sandbox data
● X2: flag
● X3: size of the packed data at X1
● X4: flag

● How to find _profile_create?
○ String “re_cache”
○ Called twice with two different __const addresses
○ (Called in _hook_policy_init, also useful to have)
○ Both of these addresses useful for more RE

_profile_create (profiles)

_profile_create (operations)

In _profile_create (pattern variables)

SBPL notes

action operation filters logical AND

● Action or “decision”
● Logical OR == “require-any”
● All together == rule

/usr/lib/libsandbox.1.dylib

● Sandox Policy Language (SBPL -- TinyScheme) compiler
○ Exposes an API
○ Also the dylib is symbolized

● All filters and their literals!
○ _filter_info
○ find_filters.py demo

● Verification with a ctypes script that uses the API
○ libpysandbox_compile.py demo

find_filters.py demo

libpysandbox_compile.py demo

libpysandbox_compile.py demo

Filters

● Filters use literals (we found them)
○ and/or can use regular expressions
○ Tried to reverse regexes based on Esser’s and Dion’s

work
○ Then found Sandblaster, used their regular expressions

deserialization work (used it as a module in my
IDAPython script)

● You can think of filters as conditions applying on operations
○ Packed in the “ops_filters_struct”

Packed profiles’ structure

● Header
○ iOS version magic
○ Regexes offsets

array offset
○ Regexes count
○ Profiles count

● ops_filters_struct

Packed profiles’ structure

● Regexes offsets array

● Regexes
○ Regex len
○ Regex bytes

Regexes parsing

ops_filters_struct

offset0

offset1

offset2

offset3

offset4

offset5

operation offsets

filter0
off: filter1

filters

of ops
in a
profile

filter1
off: filter2

filter2
off: filter3 ...

filter0
off: filter1

filter1
off: term

term
decision

filter0
off: filter1

filter1
off: filter2

filter2
off: filter3 ...

filter0
off: term

term
decision

filter0
off: filter1

filter1
off: term

term
decision

filter0
off: filter1

filter1
off: filter2

filter2
off: filter3 ...

op

op

op

op

op

op

op

op

all ops

Filters

● Filters may use regexes and/or literals

● Indexes to regexes_offset_array
○ Offset to actual regex bytes

● Same for literals (strings)

ops_filters_struct parsing

Findings

● XPC daemons sandboxed on newer devices, unsandboxed
on older devices (same iOS version, 12.1.4)
○ Note: older device tested was i5S, newer iXS

● Sandboxed XPC daemons/IOKit drivers may differ among
iOS versions
○ And their profile conditions (filters)

● Even more surprising results when you dig deeper

Attack surface enumeration

● Assumption: we start as a regular app
○ Dev signed or compromised

● Goal: LPE and then kernel code execution
○ LPE: app (mobile) -> root || app -> sandbox escape
○ Direct kernel code execution possible but surface keeps

getting smaller/hardened

● Automated; output stored per iOS version and device model
○ So diff among them is possible

Attack surface enumeration

● Analyze container.sb and gather all reachable XPC services
○ And the required entitlements (and other conditions)

● Analyze each XPC service’s profile and gather all reachable
IOKit UserClients

● The diff among iOS releases helps you define attack paths
○ And spend your auditing/reversing time more

productively

container.sb evolution

iOS version LOC (SBPL) Size (bytes)

11.2.5 3697 191469

11.4 b2 4994 328012

12.0 b3 8023 599395

12.1 b4 8285 622517

12.1 8285 583150

12.1.2 8285 626906

12.2 b4 7845 707612

Conclusion

● Common belief that the attack surface is reducing with every
iOS release
○ The reality is that it changes
○ May be reducing, may be increasing

● Always double check assumptions/findings at runtime!

● Apple’s platform is a great target for reverse engineering

References
● Apple's Sandbox Guide, fG!,

https://reverse.put.as/wp-content/uploads/2011/09/Apple-S
andbox-Guide-v1.0.pdf

● The Apple Sandbox, Dionysus Blazakis,
https://dl.packetstormsecurity.net/papers/general/apple-san
dbox.pdf

● TinyScheme, http://tinyscheme.sourceforge.net/
● iOS 8: Containers, Sandboxes and Entitlements, Stefan Esser
● Sandblaster, Razvan Deaconescu
● Hack in the (sand)Box, Jonathan Levin,

http://newosxbook.com/files/HITSB.pdf
● Thanks to co-researchers at CENSUS: Asterios Chouliaras,

Alexandros Mitakos

https://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
https://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
https://dl.packetstormsecurity.net/papers/general/apple-sandbox.pdf
https://dl.packetstormsecurity.net/papers/general/apple-sandbox.pdf
http://tinyscheme.sourceforge.net/
http://newosxbook.com/files/HITSB.pdf

Questions

