
iOS kernel exploitation archaeology

PATROKLOS ARGYROUDIS
CENSUS S.A.

argp@census-labs.com
www.census-labs.com

Who am i

● Computer security researcher at CENSUS S.A.
○ Vulnerability research, RE, exploit development

● Before CENSUS: postdoc at TCD doing netsec

● Heap exploitation obsession (userland & kernel)

● Wrote some Phrack papers ;)

Introduction

● evasi0n7 was released by the evad3rs on 22nd Dec. 2013
○ Supported iOS 7.0 to 7.1b3 - all iDevices except ATV
○ Decided to RE the kernel exploit of the jailbreak
○ Not only the bug, but the techniques too!
○ Ended up doing a re-implementation of the kernel exploit

● This talk is my notes on the project - NOT a jailbreak
walkthrough!
○ Focus on encountered difficulties & how they were

overcome
○ Take aways useful for current iOS kernel research

Outline

● evasi0n7 overview

● The kernel bug

● My debugging setup

● My re-implementation

● Lessons learned

evasi0n7 overview

● Released by the evad3rs on 22nd Dec. 2013
○ That’s like ~4 years ago, therefore “archaeology”

● Huge drama with geohot

● Huge drama with the bundled TaiG piracy app store

● The jb scene at that time was like the occult war of 1899
between Aleister Crowley and W.B. Yeats

Yeah… wait, what !?

evasi0n7 overview

● geohot released a writeup on the userland part of evasi0n7
○ Stopping at the point of gaining root
○ “since the /evasi0n7 binary is supa obfuscated good”
○ AFAIK first public jb that utilized deliberate obfuscation

● p0sixninja released a writeup on the kernel bug
○ Stopping at the gdb crash log

● I apologize in advance if I forgot/missed any details or
references

Motivation

● So, I decided to RE the /evasi0n7 binary
○ Deobfuscating it seemed like an interesting challenge
○ Wanted to understand the kernel exploitation techniques

implemented in it

● I started around the last week of February 2014
○ While working; at most 2 days per week on this

Ceremonial instruments

● iPhone 4 - limera1nable, therefore easy (lol) kernel debugging
○ Initially (lol) with iOS 7.0.6 (AArch32)
○ iPhone 5s / iOS 7.0.6 for verifying findings on AArch64 -

no kernel debugging

● evasi0n7-mac-1.0.0-5fbc5de0c23654546ad78bd75a703a57
24e15d39.dmg

● IDA, gdb (lol), lldb (lol), Ukrainian black metal

evasi0n7 obfuscation

● Not all functions were obfuscated, but some of the important
ones were

● I have been told that later versions of evasi0n7 were released
without obfuscation, but at that point I already had my
re-implementation done

The kernel bug

● Apparently discovered by p0sixninja via simple device node
fuzzing

● Requires unsandboxed root privileges
○ We will not cover that

The kernel bug

Back to ptsd_open

pis_ioctl_list placement

Debugging setup

● Started by debugging the /evasi0n7 binary in userland
○ Initially with gdb, almost nothing worked
○ Then with debugserver/lldb, a bit better, but still horrible

● While experimenting my iPhone 4 iOS 7.0.6 device went into
a recovery loop from which no fix/restore was possible :(
○ Only 7.1 signed at that time
○ My only iPhone 4 device, so I upgraded it to 7.1
○ e7 didn’t support 7.1 - pis_ioctl_list bug fixed
○ iPhone 4 limera1nable so fundamental for kernel

debugging

Kernel debugging setup

● redsn0w (util for using limera1n to boot unsigned kernels)
didn’t/doesn’t support anything newer than iOS 6.x
○ Spent considerable time trying to RE/understand redsn0w

and patch it to support iOS 7.x
○ In the end I gave up, too time consuming and wasn’t even

the main task of this project

● Decided to go with opensn0w
○ winocm’s open source redsn0w alternative
○ https://github.com/winocm/opensn0w

opensn0w

● Seemed to have support for iOS 7.x
○ Limit of 39 chars for boot-args (since iOS 7.1 was using

39 chars for boot-args)
○ Needed to use more chars to disable kernel’s security

checks and enable KDP

● Modified opensn0w to patch iBEC (which passes boot-args
to the kernel (in DFU mode))
○ Patched the pointer to the boot-args variable to point to

another location in iBEC that had a lot of available space
○ Able to have arbitrary-lengthed boot-args

Kernel debugging at last!

● Use the force-upgraded-to-iOS-7.1 iPhone 4 device with my
patched opensn0w to boot the iOS 7.0.6 kernel image!

● Little note: e7 claimed that it enabled KDP (when applying
the jailbreak patches)
○ Not really…
○ They missed a check for the debug-enabled variable in

the kernel
○ KDP session established, but froze after a while
○ My opensn0w patch included this ;)

Kernel debugging at last!

● LOL! Not really!
○ Breakpoints sometimes worked!
○ Stepping sometimes just continued execution!
○ Taking too long to type commands froze KDP!
○ Issuing commands too fast froze KDP!
○ It was awesome!

● Btw, kernel debugging on iOS 6.x was much better
○ More or less the same issues, but not as frequent
○ How do iOS kernel engineers work ?! - rhetorical

The /evasi0n7 binary

● Now I could observe what the /evasi0n7 binary was doing
from the kernel’s point of view
○ So I started debugging it from both sides; userland and

kernel
○ While manually deobfuscating obfuscated functions with

hints from runtime, keeping notes with IDA

● Quickly found that it was abusing the tty structure
○ To obtain read/write access to physical memory

Re-implementation!

● More fun to develop my own exploit
○ Not from scratch but based on the notes I had up to that

point
○ Wanted to use the vm_map_copy structures technique

(by Dowd and Mandt) - heap obsession

● Clear understanding of the bug, and a general/fuzzy idea
about exploiting it
○ Pen and paper, testing, evaluation, repeat
○ Ad nauseam; despair; new idea; repeat

Let’s revisit the bug

● In essence it was an invalid indexing bug
○ In the pis_ioctl_list array which is allocated on the heap

(element of a global struct)
○ We control the size of the array on the heap, we can grow

it but not shrink it
○ ptmx_get_ioctl stores at the invalid index of the array the

address of the pmtx_ioctl struct (which was allocated on
kalloc.88)

vm_map_copy technique

● Originally proposed by Dowd and Mandt
● Spraying the kernel heap with them by sending messages to a

mach port with OOL descriptors (controlled size)
● Overwrite its size element and/or its kdata element

○ Adjacent or arbitrary leak
● Overwrite its kalloc_size element

○ kfree() puts it to a wrong zone
○ Allocate it back and write to it; heap overflow

vm_map_copy fuzzy idea

● I’ll use the pis_ioctl_list index bug to access the kdata pointer to
leak kernel memory

● Kernel heap arrangement and manipulation for achieving arbitrary
R/W primitives

Exploitation

Exploitation
Stage 1

● Spray with vm_map_copy structs and create holes on the
kalloc.256 zone
○ kalloc.256 selected since during debugging seemed

“quiet”
○ tty structs go to kalloc.384; steer clear

● Move the pis_ioctl_list to kalloc.256 (by enlarging it)
○ Goes into one of the holes we have created
○ Next to it we have a vm_map_copy struct

Exploitation
Stage 1

Exploitation
Stage 1

Exploitation
Stage 1

Exploitation
Stage 2

● Spray with vm_map_copy structs and create holes on the kalloc.88
zone

● Create a new master PTMX device with an invalid index value
○ Allocates a ptmx_ioctl struct (kalloc.88)
○ Goes into one of the kalloc.88 holes we have created it
○ Calling open() on this device stores the address of the

ptmx_ioctl struct at the (invalid) index of the pis_ioctl_list
○ We control the index;
○ We relatively place it on the kdata field of the neighboring

vm_map_copy struct

Exploitation
Stage 2

Exploitation
Stage 2

Exploitation
Kernel heap leak (stages 1 & 2)

Exploitation
Kernel heap leak (stages 1 & 2)

● We receive the OOL message
○ We now have the kernel heap pointer that has the address of

the newly allocated ptmx_ioctl struct
○ An address of a slot of the kalloc.88 kernel heap zone

Exploitation
Kernel heap leak (stages 1 & 2)

Exploitation
Stage 3

● Triggering the bug on a slave ptmx device reaches a code path
that gives us a write
○ Need to survive dereferences; we know a kalloc.88 address

● Clean-up the kalloc.256 zone, spray it again with vm_map_copy
structs and create holes
○ Again, next to the pis_ioctl_list array we place a vm_map_copy

struct
○ We use a payload/buffer for it that has a fake ptmx_ioctl

pointer
○ ptmx_ioctl has a pointer to a tty struct
○ We use the leaked kernel heap address for the fake tty pointer

Exploitation
Stage 3

● Clean-up the kalloc.88 zone and spray it again

● With vm_map_copy structs, to
○ Use their payload to place part of the fake tty struct (doesn’t fit

in kalloc.88, it’s 256 bytes*)
○ We plan to use their size and/or kalloc_size fields as targets

for controlled relative writes
○ Then use Dowd’s methods for arbitrary read/heap overflow via

vm_map_copy structs

* But goes to kalloc.384

Exploitation
Stage 3

● Problem: our fake tty struct must be 256 bytes (since we need to
survive various uses of it)
○ Also spray kalloc.88 that something that allows us to host the

rest of the fake tty struct

● Open the AppleJPEGDriver IOKit driver
○ Spray with XML properties of length 88 (i0n1c’s technique)
○ Placed on kalloc.88 after our vm_map_copy struct
○ Its content is the second part of our fake tty struct
○ It’s enough to reach the desired code path that gives us a write
○ We corrupt the neighboring vm_map_copy struct

Fake tty struct on kalloc.88

● Note: arbitrary R/W just with the fake tty?
● Theoretically possible, in practice unstable
● Remember, our two kalloc.88 slots cannot hold the whole

fake tty struct (256 bytes)
● We point c_cs to the neighboring vm_map_copy struct’s size

or kalloc_size fields

Exploitation
Stage 3

Exploitation
Stage 3

Exploitation
Stage 3

Exploitation
Stage 3

Exploitation
Stage 3

Data-only banishing ritual

● We have a controlled corruption over a vm_map_copy struct
○ We can use duke’s primitives for arbitrary read/heap

overflow

● Plus, we know our location in the kernel heap
○ Our 1 & 2 stages; we used that knowledge extensively and

built on it our whole attack

● Everything up to this point is data-only

Banishing ritual

● Not much work getting PC control from here
○ Play with vtables of IOKit objects

● Getting from here to a whole jailbreak is out of the scope of
this talk (obviously ;)

● How close to the evasi0n7 kernel exploit techniques?
○ Pretty far off I’d say ;)
○ At least I temporarily satisfied my heap exploitation

obsession

Lessons learned

● Don’t hack Apple
○ I can’t believe Apple kernel engineers work with the same

debugging tools as the ones Apple publicly provides

● jk; hack Apple ;)
○ It’s becoming harder, but more fun

● Need for sharing notes

evasi0n7 greetz

● i0n1c

● winocm

● ih8sn0w

● Someone

References

● https://www.theiphonewiki.com/wiki/Evasi0n7
● http://geohot.com/e7writeup.html
● https://twitter.com/evad3rs
● http://evasi0n.com/
● http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-di

ssecting-evasi0n.html?m=1
● https://github.com/winocm/opensn0w
● i0n1c’s iOS kernel heap talks
● Jonathan Levin’s *OS Internals Volume III has a chapter on

evasi0n7

https://www.theiphonewiki.com/wiki/Evasi0n7
http://geohot.com/e7writeup.html
https://twitter.com/evad3rs
http://evasi0n.com/
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html?m=1
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html?m=1
https://github.com/winocm/opensn0w
https://www.slideshare.net/i0n1c/
http://newosxbook.com/toc3.html

Questions

