
OWASP
AppSecResearch 2012

Heap Exploitation
Abstraction by Example
Patroklos Argyroudis, Chariton Karamitas
{argp, huku}@census-labs.com
Census, Inc.

Who are we

Patroklos Argyroudis, argp

Researcher at Census, Inc. (www.census-labs.com)

Topics: kernel/heap exploitation, auditing

Chariton Karamitas, huku

Student at AUTh, intern at Census, Inc.

Topics: compilers, heap exploitation, maths

http://www.census-labs.com
http://www.census-labs.com

Outline

Example: FreeBSD kernel memory allocator (UMA)

Example: Linux kernel memory allocator (SLUB)

Example: jemalloc userland memory allocator

Abstracting heap exploitation

Related Work

“Attacking the Core: Kernel Exploiting Notes” [1]

twiz, sgrakkyu, Phrack, 2007

Linux (heap), Solaris (stack)

“Kernel Wars” [2]

signedness.org, Black Hat EU, 2007

*BSD (mbuf), Windows (stack)

Related Work
“Exploitation in the Modern Era (Blueprint)” [3]

Chris Valasek, Ryan Smith, Black Hat EU, 2011

First attempt to abstract exploitation

“Patras Heap Massacre” [4]

Chariton Karamitas, Patroklos Argyroudis,
Fosscomm, 2011

Attempt to abstract heap exploitation

Example: FreeBSD UMA

Universal Memory Allocator

FreeBSD’s kernel memory allocator

Funded by Nokia for a proprietary project

The IPSO firewall/security appliance (thanks FX!)

Donated to FreeBSD

Functions like a traditional slab allocator

Large areas, or slabs, of memory are pre-allocated

malloc(9) returns a free slot

UMA Architecture

UMA Architecture
Each zone (uma_zone) holds buckets (uma_bucket) of
items

The items are allocated on the zone's slabs (uma_slab)

Each zone is associated with a keg (uma_keg)

The keg holds the corresponding zone's slabs

Each slab is of the same size as a page frame (usually
4096 bytes)

Each slab has a slab header structure (uma_slab_head)
which contains management metadata

vmstat(8)

Slabs

uma_slab_head

uma_keg

uma_zone

Code Execution

uz_dtor Hijacking

Example: Linux SLUB

SLUB
Organizes physical memory frames in “caches” (UMA:
kegs)

Each cache holds slabs (UMA: slab) of objects (UMA:
items) of the same size

kmalloc-32, kmalloc-64, task_struct, mm_struct

Objects on a slab are contiguous

A slab may have both allocated (used) and deallocated
(free) objects

SLUB’s slabs
Each slab is at least PAGE_SIZE bytes (default 4096
bytes)

A slab may span many pages

kmalloc-32: 128 objects * 32 bytes == 4096 bytes

task_struct (1088 bytes): 30 objects * 1088 bytes ==
32640

A task_struct slab spans 8 pages

Each CPU core has its own slabs

Metadata?
No separate/dedicated metadata structures stored on
the slabs

Each free object stored on a slab has a next-free-object
pointer

Each slab has a page structure (struct page) that has a
pointer (freelist) to the slab's first free object

SLUB’s behavior
Partial slabs: some free and some used objects

New requests satisfied from partial slabs

Least-recently-used (LRU) policy

No partial slabs → allocation of new slab

Generic slabs (e.g. kmalloc-32) are used to store
different objects of the same size

Different kernel structures, buffers, etc

Contiguous

SLUB Exploitation
Attack alternatives

Corrupt metadata of free objects on a slab

Corrupt adjacent objects on a slab

We need a suitable kernel structure to corrupt

We can allocate/deallocate from userland

Same size as the object/structure we can overflow from

Bring target slab to a predictable state in order to have
the victim structure after the structure we can overflow
from

SLUB Exploitation Algorithm
 Find free objects on target slab:

cat /proc/slabinfo

Ensure allocations/deallocation happen on the slabs of
the same CPU: sched_setaffinity(2)

Consume a large number of objects that go on the target
slab (reducing fragmentation)

Deallocate a small number of objects from the target slab

Allocate a smaller number of our selected victim objects

Trigger the heap overflow bug overflowing onto the victim
object

SLUB Exploitation

Victim Structure

Traditionally struct shmid_kernel

Allocations/deallocations controlled from userland

Allocation: shmget(2)

Deallocation: ipcrm(1)

Leads to structure with yummy function pointers

shmid_kernel

file

file_operations

Example: jemalloc

jemalloc
FreeBSD needed a high performance, SMP-capable
userland (libc) allocator

Mozilla Firefox (Windows, Linux, Mac OS X)

NetBSD libc

Standalone version

Facebook, to handle the load of its web services

Defcon CTF is based on FreeBSD

jemalloc overview

Memory is divided into chunks, always of the same size

Chunks store all jemalloc data structures and user-
requested memory (regions)

Chunks are further divided into runs

Runs keep track of free/used regions of specific sizes

Regions are the heap items returned by malloc()

Each run is associated with a bin, which stores trees of
free regions (of its run)

jemalloc Architecture

jemalloc Exploitation

Adjacent memory overwrite

Metadata overwrite

Run header corruption

Chunk header corruption

Magazine (a.k.a thread cache) corruption

For the details attend our Black Hat USA 2012 talk!

Abstracting Heap
Exploitation

UMA - SLUB - jemalloc
End-user allocations: UMA - items, SLUB - objects,
jemalloc - regions

Allocation containers: UMA - slabs, SLUB - slabs,
jemalloc - runs

Container groupings: UMA - kegs, SLUB - caches,
jemalloc - chunks

Execution-specific metadata:

UMA - zone, Linux kernel - zone, jemalloc - arena

UMA - buckets, SLUB - N/A, jemalloc - bins

Value of Abstraction

Chris Valasek's and Ryan Smith's Black Hat EU 2011
talk on abstracting exploitation through primitives [3]

Back in CS 101 we were taught that abstraction is the
most important skill of a computer scientist

Specific exploitation techniques will become obsolete

Our 2 drachmas are to abstract heap exploitation and
have “primitives” that can be applied to new targets

Memory Allocators as Weird
Machines

Weird machine: The state machine of the target
program after memory corruption [5, 6]

In our case

State machine: Memory allocator

Weird machine: Post-corruption memory allocator

New states, unexpected by the developer

However reachable due to the memory corruption

Heap Weird Machines

Heap Weird Machines
Our memory allocator model: deterministic automaton
(threads not taken into account)

Metadata corruption abstraction

Corruption of the automaton’s transition function

New states are reachable - most dead but not all

Data (e.g. adjacent item) corruption abstraction

Manipulation of the automaton’s determinacy

We control the order of transitions

The Weirding Module ;)

The target heap manager should be treated as a high
level API

For allocations and deallocations

“Applications” that use the allocator (Javascript, system
calls, incoming packets) provide a way to proxy these
API calls

Attacker Application (Proxy) Allocator

The Weirding Module ;)

Conclusion

Future work

Operational semantics (formal notation)

More examples on both allocators and exploits

Acknowledgments

Dr ;) Dimitris Glynos

Chris Valasek

Sergey Bratus

References
[1] “Attacking the Core: Kernel Exploiting Notes”, twiz,
sgrakkyu, Phrack, 2007

[2] “Kernel Wars”, signedness.org, Black Hat EU, 2007

[3] “Exploitation in the Modern Era (Blueprint)”, Chris Valasek,
Ryan Smith, Black Hat EU, 2011

[4] “Patras Heap Massacre”, Chariton Karamitas, Patroklos
Argyroudis, Fosscomm, 2011

[5] “Exploit Programming”, Sergey Bratus et al, ;login:, 2011

[6] “Exploitation and State Machines”, Halvar Flake, Infiltrate,
2011

