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Abstract

The exploitation of operating system kernel vulner-
abilities has received a great deal of attention lately.
In userland most generic exploitation approaches
have been defeated by countermeasure technolo-
gies. Contrary to userland protections, exploita-
tion mitigation mechanisms for kernel memory cor-
ruptions have not been widely adopted. Recently
this has started to change. Most operating system
kernels have started to include countermeasures
against NULL page mappings, stack and heap cor-
ruptions, as well as for other vulnerability classes.
At the same time, researchers have concentrated
on developing ways to bypass certain kernel protec-
tions on various operating systems. This whitepa-
per describes the state-of-the-art in kernel exploita-
tion mitigations as adopted by various operating
systems (Windows, Linux, Mac OS X, FreeBSD)
and mobile platforms (iOS, Android). Moreover,
it also provides approaches, hints and references to
existing work for bypassing some of these kernel
protections.

1 Introduction

The importance of kernel security has become
paramount in recent times since operating system
kernels have become an attractive target for at-
tackers. The reasons behind this interest lie in the
characteristics of modern operating system kernels.
Specifically, kernels consist of large code bases with
many subsystems. These subsystems interact with
each other via complicated interfaces. In addition
to the above, operating system kernels have count-
less entry points for user data. For example, system
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calls, IOCTLs, filesystems, and network connec-
tions, among others, allow user-controllable data to
reach important code paths in the kernel. There-
fore, there are many possibilities of bugs that can
lead to vulnerabilities that compromise the entire
system’s security model.

The rest of this whitepaper is structured as fol-
lows. The next section presents the most common
and widely exploited kernel memory corruption
vulnerability classes. Section 3 gives an overview of
the memory corruption mitigations that have been
deployed to address the exploitation of userland
vulnerabilities. Section 4 describes the state-of-the-
art in kernel exploitation mitigations as adopted by
popular operating systems (Windows, Linux, Mac
OS X, FreeBSD) and mobile platforms (iOS, An-
droid). In section 5 we provide notes for generic
kernel protection bypasses, before we present our
conclusions in section 6.

2 Kernel memory corruption
vulnerabilities

One of the most common kernel vulnerability
classes are NULL pointer dereferences. The value
NULL is widely used in kernel code for initializa-
tion, to signify the default case, or as a return value
on error. In systems where the virtual address
space is split into two, one for the kernel and one
for the processes, this creates problems when the
kernel tries to dereference a NULL pointer. In this
case if the user is allowed to map NULL (i.e. the
first page which contains the address 0) then he can
directly or indirectly control the kernel’s code path.
More generally, NULL pointer dereference vulner-
abilities have clearly demonstrated that there are a
lot of problems when the kernel blindly trusts data
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provided by the userland.
Another class of vulnerabilities that has been ex-

ploited in the context of operating system kernels
is that of traditional stack overflows. Kernels com-
monly use two types of stacks. One to service re-
quests from a user process and another one to ser-
vice requests from kernel internal components. Fur-
thermore, overflows in kernel allocated memory can
also be exploited via either corruption of adjacent
heap objects or corruption of the memory alloca-
tor’s metadata.

The implementation bugs that can lead to such
memory corruption vulnerabilities are well known
and have been analyzed extensively in the relevant
published literature. For reasons of completeness
we discuss them here briefly. Insufficient validation
of user input remains the main bug that leads to
kernel memory corruptions. This can either take
the form of traditional insufficient bounds checking
or user-controlled array indexes and/or reference
counters. Signedness bugs can also lead to kernel
vulnerabilities. A common case is the one presented
in Listing 1.

Listing 1: Example of signedness bug
i n t func ( s i z e t u s e r s i z e ) {

i n t s i z e = u s e r s i z e ;
. . .
i f ( s i z e < MAX SIZE) {
/∗ do some operat i on with s i z e

cons ide r ed s a f e ∗/
}
. . .

}

If the unsigned variable user size is greater than
231 − 1 then the signed variable size will become
negative and the “if” statement will evaluate to
true. Although this specific signedness bug is not as
common nowadays, it can still be found in certain
operating system kernels. Integer overflows can
happen as a result of numeric operations, typically
multiplications, and can lead the kernel to allocate
less memory than required for the target buffer of
copied data. Race conditions are particularly ap-
plicable to kernels since most CPUs nowadays are
SMP. Therefore implementations need to be care-
ful of their use of shared resources to avoid bugs
in which a resource changes state between time of
validation and time of use.

3 Userland memory corrup-
tion mitigations

Most generic userland exploitation approaches have
been defeated by countermeasure technologies. In
this section we give an overview of these tech-
nologies. Stack canaries are probably the most
well known and understood exploitation mitigation
technology. They are used to protect metadata
stored on the stack. These stack metadata (such
as the saved return address and the saved frame
pointer) can be corrupted via programming bugs,
such as stack buffer overflows, and can lead to secu-
rity vulnerabilities. A similar protection is imple-
mented on the heap with the use of heap canaries.
These are guard values used to protect heap man-
agement metadata from overflows. Furthermore,
heap guard values are also used in some imple-
mentations to encode important pointers stored in
the metadata. Another heap mitigation is the val-
idation of the destination addresses that metadata
pointers of linked lists point to before their corre-
sponding elements are removed from the list (safe
unlinking).

Address Space Layout Randomization (ASLR) is
an exploitation mitigation that introduces random-
ness to virtual memory in order to thwart exploita-
tion mechanisms that rely on static addresses. Dif-
ferent operating systems have introduced ASLR for
different areas. For example, the location of the
userland stack is randomized between application
instantiations. Also, the location of the userland
heap is randomized. That is, there is a random-
ized offset added between the base address of the
executable and the heap. The base address of dy-
namic libraries and executables is also randomized
on some ASLR implementations.

Several CPUs nowadays provide the feature to
forbid execution from memory regions that are
marked as non-executable. This technology is
known with various names (NX – Non-eXecute, XD
– eXecute Disable, XN – eXecute Never, etc.) on
various CPU platforms. This feature is used by
operating systems to mark regions on the userland
stack and heap as non-executable. Mandatory Ac-
cess Control (MAC) is another defense employed by
operating systems to minimize the impact of com-
promised applications on the system as a whole.
Technologies such as SELinux, grsecurity (RBAC)
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and AppArmor (path-based) have been developed
and, to a certain extend, adopted. A similar goal of
containing application compromises is implemented
by process debugging protection approaches. These
forbid users to debug (their own) processes that are
not launched by a debugger.

Compile-time fortifications are also being de-
ployed in the userland of popular operating sys-
tems. Features such as -D FORTIFY SOURCE=2
and variable reordering are used to harden privi-
leged applications and network daemons. Finally,
it must be stressed that grsecurity/PaX [1] is the
seminal work on the subject, has influenced most,
if not all, of the exploitation mitigation implemen-
tations and provides much more defense features
than the ones we listed in this section.

4 Kernel exploitation mitiga-
tions

4.1 Linux

Our Linux tour on kernel exploitation mitigations
will focus on the technologies present in the 2.6.37
release of the kernel. The Linux kernel supports
the SSP-type stack protection offered by GCC’s
-fstack-protector option. This protection is en-
abled by the CC STACKPROTECTOR compile-time op-
tion and affects both module and kernel code. This
setting also protects any module code that a user
might build after kernel installation.

GCC’s SSP mechanism implements two types of
stack protection, the first one being variable re-
ordering and the second one being a stack canary.
Variable reordering makes sure that the compiler
places all local array variables in high addresses on
the stack, so that an overflow in these arrays may
not overwrite other crucial variables such as local
function pointers (see Fig.1). In fact, the compiler
moves all local function pointers to the lowest ad-
dresses of the allocated space in the stack, so that a
memcpy() on some other allocated variable will not
overwrite their values. This type of defense is cru-
cial since it protects the kernel code from attacks
that redirect kernel execution by dereferencing lo-
cal pointers, before the vulnerable function exits.

The most common stack buffer overflow attack
involves a local array that has been overflown with
bytes that overwrite the saved instruction pointer

memory stack contents
high address ...

array variable
↑ integer variable

function pointer variable
low address ...

Figure 1: Example of local variable placement
strategy of GCC SSP

memory stack contents
high address ...

function parameters
saved instruction pointer

↑ saved frame pointer
canary

local variables
low address ...

Figure 2: Linux stack canary placement

(or in some cases saved frame pointer). This type
of exploitation targets the post-exit conditions of
a function. The GCC SSP mechanism protects the
kernel code from such exploitation by placing a ran-
dom “canary” value between the local variables and
the saved frame pointer (see Fig.2). At the func-
tion epilogue code the kernel checks that the ca-
nary value on the stack is still equal to the original
canary value. If the two values are found to be
different, the kernel panics (see Fig.3).

Kernel panic - not syncing: stack-protector:

Kernel stack is corrupted in c10e1ebf

Pid: 9028, comm: canary-test Tainted: G D 2.6.37 #1

Call Trace:

[<c1347887>] ? printk+0x18/0x21

[<c1347761>] panic+0x57/0x165

[<c1026339>] __stack_chk_fail+0x19/0x30

[<c10e1ebf>] ? proc_fdinfo_read+0x6f/0x70

[<c10e1ebf>] proc_fdinfo_read+0x6f/0x70

[<c10a377d>] ? rw_verify_area+0x5d/0x100

[<c10a42d9>] vfs_read+0x99/0x140

[<c10e1e50>] ? proc_fdinfo_read+0x0/0x70

[<c10a443d>] sys_read+0x3d/0x70

[<c1002b97>] sysenter_do_call+0x12/0x26

Figure 3: Linux kernel panic after detection of a
canary overwrite

Listing 2 shows the actual code that handles
the canary in the function prologue and epilogue
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Listing 2: Canary placement and checking code for
Linux
pro logue : mov %gs : 0 x14 , %edx

mov %edx , −0x10(%ebp )
. . .

ep i l o g ue : mov −0x10(%ebp ) , %edx
xor %gs : 0 x14 , %edx
jne f a i l
. . .

f a i l : c a l l s t a c k c h k f a i l

of proc fdinfo read(). GCC requires the canary
value to be located at %gs:0x14. The first two in-
structions (that are part of the function prologue)
read the canary from this location and write it on
the stack. In the function epilogue, the canary is
retrieved from the stack and checked against the
value contained in %gs:0x14. If the check fails
GCC calls the kernel-supplied stack chk fail
function, which in the case of Linux causes a kernel
panic to occur.

At boot time the kernel generates a per-CPU ca-
nary value as shown in Listing 3. Afterwards, each
time a Lightweight Process (LWP) is created it re-
ceives its own random canary value as shown in the
code snippets of Listing 4. For the readers that are
not acquainted with Linux, a Lightweight Process
is the kernel’s representation of a scheduled thread.
Having per-LWP canaries means that the kernel
stack that handles system calls for each thread, re-
ceives its own canary. Hence, the kernel side of a
multi-threaded userland application will effectively
be protected by multiple canaries, one for each ap-
plication thread.

Since the kernel uses the -fstack-protector
option of GCC (as opposed to
-fstack-protector-all), canary protection
is offered only for functions that have local char-
acter arrays of size 8 or more bytes. Typically,
in a kernel image of 16604 functions only 378
(approx. 2%) receive stack canary protection.

The Linux kernel supports multiple types of slab
allocators, the most recent of which is the SLUB
allocator. A slab allocator is a dynamic memory
allocator (i.e. kernel heap allocator) that allocates
contiguous “slabs” of memory for object storage
purposes. Objects of the same type (i.e. same

length) are grouped in “caches” which may span
multiple slabs. By having pre-allocated memory
for objects of one type, a slab allocator allows the
fast creation of new objects of the same type by re-
claiming the space of recently “deleted” (or unini-
tialized) objects.

The SLUB allocator inserts a canary-like region
to the end of each allocated object. This word-sized
region is called “Red Zone” and contains ‘0xcc’
bytes if the object is in use and ‘0xbb’ bytes if the
object is free (i.e. free space from uninitialized or
previously deleted object). However, the Red Zone
is not a security mechanism to help defend against
kernel heap corruptions. It is a tool to help develop-
ers identify memory corruption bugs in the kernel
code.

To enable the Red Zone feature one must compile
the kernel with the SLUB DEBUG option and boot the
kernel with the slub debug=FZ parameter. Once a
Red Zone overwrite has been detected, the kernel:

1. prints debugging information to the system
console (see Fig. 4)

2. restores the contents of the Red Zone

3. continues execution

The Linux kernel also uses some generic mem-
ory protection schemes. For instance, it is capable
of write-protecting the pages belonging to its own
code along with those of read-only data (e.g. built-
in firmware, kernel symbol table etc.). For the read-
only data pages the execute bit is also disabled on
some architectures that support this.

To defend against NULL page (userspace) map-
pings the kernel enforces a limit on the lowest pos-
sible address that a page can be mapped in the
address space of a userspace process. The symbol
for this threshold is called mmap min addr and in-
fluences any mmap call made by a userspace process.
By default mmap min addr defaults to 4096 (i.e. one
page over the NULL page on x86 32) but the user
can modify this in two ways:

• Through a Linux Security Module

• Through a Discretionary Access Control
(DAC) mechanism

The SELinux LSM checks the compile-time
option CONFIG LSM MMAP MIN ADDR and the per-
mission MEMPROTECT MMAP ZERO to figure out if
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Listing 3: boot init stack canary from arch/x86/include/asm/stackprotector.h

s t a t i c a l w a y s i n l i n e void b o o t i n i t s t a c k c ana r y ( void )
{

u64 canary ;
u64 t s c ;

#i f d e f CONFIG X86 64
BUILD BUG ON( o f f s e t o f ( union i r q s t a ck un i on , s tack canary ) != 40 ) ;

#end i f
/∗
∗ We both use the random pool and the cur rent TSC
∗ as a source o f randomness . The TSC only matters
∗ f o r very e a r l y i n i t , the r e i t a l r eady has some
∗ randomness on most systems . Later on during the
∗ bootup the random pool has t rue entropy too .
∗/

get random bytes (&canary , s i z e o f ( canary ) ) ;
t s c = n a t i v e r e a d t s c ( ) ;
canary += t s c + ( t s c << 32UL) ;

current−>s tack canary = canary ;
#i f d e f CONFIG X86 64

percpu wr i t e ( i r q s t a c k un i on . s tack canary , canary ) ;
#e l s e

percpu wr i t e ( s tack canary . canary , canary ) ;
#end i f
}

Listing 4: per-LWP canary initialization
dup ta sk s t ru c t @ ke rne l / f o rk . c :
281 : tsk−>s tack canary = get random int ( ) ;

d r i v e r s / char /random . c :
1627 : DEFINE PER CPU( u32 [ 4 ] , get random int hash ) ;
unsigned i n t get random int ( void )
{

s t r u c t keydata ∗ keyptr ;
u32 ∗hash = get cpu var ( get random int hash ) ;

i n t r e t ;

keyptr = ge t keypt r ( ) ;
hash [ 0 ] += current−>pid + j i f f i e s + g e t c y c l e s ( ) ;

r e t = hal f md4 trans form ( hash , keyptr−>s e c r e t ) ;
put cpu var ( get random int hash ) ;

r e turn r e t ;
}
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=======================================================================

BUG kmalloc-1024: Redzone overwritten

-----------------------------------------------------------------------

INFO: 0xc7ac9018-0xc7ac9018. First byte 0x33 instead of 0xcc

INFO: Slab 0xc7fe5900 objects=15 used=10 fp=0xc7aca850 flags=0x400040c0

INFO: Object 0xc7ac8c18 @offset=3096 fp=0x33333333

Bytes b4 0xc7ac8c08: 00 00 00 00 00 00 00 00 cc cc cc cc 00 00 00 00

Object 0xc7ac8c18: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33

...

Redzone 0xc7ac9018: 33 cc cc cc

Padding 0xc7ac901c: 00 00 00 00

Pid: Pid: 8382, comm: cat Not tainted 2.6.37 #2

Call Trace:

[<c10a0e77>] print_trailer+0xe7/0x130

[<c10a152d>] check_bytes_and_report+0xed/0x150

[<c10a16e0>] check_object+0x150/0x210

[<c10a1f22>] free_debug_processing+0xd2/0x1b0

[<c10a35ae>] kfree+0xfe/0x170

[<c87f31c0>] ? sectest_exploit+0x1a0/0x1ec [sectest_overwrite_slub]

...

[<c1002b97>] sysenter_do_call+0x12/0x26

FIX kmalloc-1024: Restoring 0xc7ac9018-0xc7ac9018

Figure 4: Linux system console output after detection of a Red Zone overwrite

a user should be able to map pages below
CONFIG LSM MMAP MIN ADDR. In the DAC case, the
administrator can set the desirable value for
mmap min addr via the sysctl command (sysctl
vm.mmap min addr) or the equivalent /proc inter-
face (/proc/sys/vm/mmap min addr).

A case of particular interest to memory mapping
attacks is that of “Poison” pointers. The Linux ker-
nel assigns special values known as “Poison values”
to members of free’d (or uninitialized) kernel ob-
jects. These values help developers distinguish if an
invalid memory access is caused by a use-after-free
kernel bug or not. For example, the linked list API
defined in include/linux/list.h provides the fol-
lowing two Poison values for list item->prev and
list item->next pointers (in non x86 64 architec-
tures):

• LIST POISON1 = 0x00100100

• LIST POISON2 = 0x00200200

Unfortunately, if a use-after-free bug derefer-
ences these pointers on a x86 32 system, it will
reference a memory location that can be mapped
by a userspace process [2]. This would allow an
attacker to redirect the kernel execution flow to
his own payload in a manner similar to that of
a NULL page mapping exploit. Users that wish

to protect themselves from this type of threat will
want to define an unmappable memory address to
the CONFIG ILLEGAL POINTER DELTA compile-time
option so that the above pointer values are offset
by the amount specified by the option.

The Linux kernel supports the dynamic load-
ing of kernel code through Linux Kernel Modules
(LKM). To compile a kernel with LKM support one
needs to select the CONFIG MODULES configuration
option. Once the kernel is running, only a root
user or a user with the CAP SYS MODULE capability
will be able to load a module into the kernel. As
shown in Fig. 5 modules reside in writable kernel
pages.

$ cat /proc/modules

sectest 1162 0 [permanent], Live 0xc87f3000

# grep ^0xc87f3000 /debugfs/kernel_page_tables

0xc87f3000-0xc87f4000 4K RW GLB x pte

Figure 5: Example of loaded Linux Kernel Module

The Linux kernel also supports the auto-loading
of kernel modules, when a user request cannot be
fulfilled with the code currently available in the ker-
nel. For example, when the user creates a socket
of a specific protocol family, the kernel auto-loads
code for that family with a call similar to the one
shown below:
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request_module("net-pf-\%d", family);

Although this type of demand-loading may be ben-
eficial in terms of user experience, it exposes the
kernel to a broader set of security-related dangers.
Specifically, it allows an unprivileged user to indi-
rectly load kernel code that might not be of high
quality or code that has not been rigorously tested.
To make this clearer let us imagine a scenario where
an unauthenticated user connects a USB device to
a Linux host. The kernel will automatically load
the appropriate USB driver and depending on the
Desktop Environment used, the kernel might also
be forced to load a filesystem driver in order to
automatically mount the USB device’s filesystem.
The attacker could have crafted this filesystem in
such a way so that he could trigger a security bug
in a beta-quality filesystem driver and eventually
gain complete access to the Linux host.

Stock kernels can also be an issue. They usually
come with a plethora of modules so that they
can be used with a wide variety of software and
hardware configurations. As a result of this, they
provide the attacker with a much larger attack
surface. A recent example of this was the CVE-
2010-2959 bug in the Controller Area Network
subsystem [3]. The Debian GNU/Linux was one of
the many distributions that offered this module in
its stock kernel packages. An attacker could easily
auto-load the vulnerable module code by creating
a CAN socket and then exploit a vulnerability in
this code with the proper input. To mitigate this
type of attack one has to either manually install
only the absolutely necessary modules for the
system to function, or to blacklist all unnecessary
modules (via /etc/modprobe.d/blacklist), or
even to disable module loading at compile time.
The Linux kernel also supports disabling module
loading at runtime. This allows administrators to
first load all necessary modules (say, at boot-time)
and then disable all further module loading opera-
tions. This feature is available through the /proc
(/proc/sys/kernel/modules disabled) and
sysctl (kernel.modules disabled) interfaces.

We will close our tour of the Linux kernel se-
curity protections by briefly describing the ker-
nel patches provided by the grsecurity project
[1]. The project offers a hardening solution that
strengthens the security of both the kernel and
userland.

The PaX patch offers the following kernel pro-
tections:

PAX KERNEXEC Non-executable kernel pages
through segmentation

PAX RANDKSTACK Randomization of kernel stack
address

PAX MEMORY UDEREF Protection against invalid
userland pointer dereferences

PAX USERCOPY Bounds checking on heap objects
when copying to/from userland

PAX MEMORY SANITIZE Sanitization (zero-ing) of
freed kernel pages

PAX REFCOUNT Kernel object reference counter
overflow protection

The integrated grsecurity patch also contains the
following kernel security measures:

GRKERNSEC KMEM Disallow kernel modifica-
tions through /dev/mem, /dev/kmem and
/dev/port

GRKERNSEC IO Privileged I/O can be disabled
(ioperm, iopl)

GRKERNSEC VM86 VM86 mode is restricted to users
with the CAP SYS RAWIO capability

GRKERNSEC MODHARDEN Allow module autoloading
only for the root user

GRKERNSEC HIDESYM, GRKERNSEC PROC Non-root
users are denied access to kernel symbols
and files that reveal sensitive kernel infor-
mation (see also GRKERNSEC PROC USER and
GRKERNSEC PROC ADD)

GRKERNSEC DMESG Access to dmesg(8) is forbidden
for non-root users

Finally, it should be noted that the grsecurity
patches fix the aforementioned Poison pointer at-
tack vector, by supplying “safe” pointer values
to LIST POISON1 and LIST POISON2, i.e. addresses
that cannot be mapped by a userspace process.
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4.2 Windows

Windows 7 (NT version 6.1) has a number of kernel
exploitation mitigations. The /GS (buffer security
check) Visual Studio compiler option can be used
when building core kernel components and drivers.
In a driver context, on a protected function start
a value (cookie) is placed on the stack before the
exception handler table and saved registers. On
function exit the value is checked to detect stack
corruptions. This cookie (guard value) is 32 bits
long on 32-bit Windows and 64 bits long (the top
16 bits of which are always clear) on 64-bit Win-
dows. /GS protects functions that have locally de-
clared GS buffers. Specifically, /GS protects func-
tions with a) arrays that are larger than 4 bytes, b)
buffers allocated with alloca, c) data structures of
size larger than 8 bytes (with no pointers though)
[4].

The initialization of the /GS kernel cookie in
a kernel component, for example win32k, is done
in the GsDriverEntry function of the component.
This is done with the win32k! security init cookie
function. At the prologue of a protected function
the cookie, which is stored in the global for the ker-
nel component variable win32k! security cookie, is
XOR’ed with the value of the EBP register and
saved on the stack. At the epilogue of the function
the cookie is retrieved from its location on the stack
and passed to the win32k! security check cookie
function. If the cookie has been corrupted the ker-
nel is halted. Fig. 6 illustrates a kernel function’s
stack protected via /GS.

An example success story for the Windows ker-
nel /GS protection is the ICMPv6 router ad-
vertisement vulnerability (MS10-009/CVE-2010-
0239). This was a remote code execution vulner-
ability due to unbounded memory copying when
processing ICMPv6 router advertisement packets.
When the vulnerability is triggered the /GS ker-
nel stack cookie is corrupted and the kernel halts
giving a blue screen of death. This is preferable to
the alternative which is remote code execution and
subsequent full compromise of the system.

There are two ways published in the literature
to bypass the /GS kernel stack cookie [2], both of
which have specific requirements. The first way is
to overwrite the saved return address without cor-
rupting the cookie. This requires to have control
over the destination address of the memory corrup-

Figure 6: Example of a Windows kernel function’s
stack protected via /GS

tion bug. The second way consists of overwriting
the functions’ addresses in the exception handler
table stored on the stack. The exception handler
table’s functions don’t need to be in kernel mem-
ory and can be overwritten. The requirements for
this approach are a) for the exception handler ta-
ble to exist (i.e. the target driver has registered
exceptions), and b) to trigger an exception during
or after the kernel stack’s corruption.

An approach for guessing the Windows /GS ker-
nel cookie has been recently published [5] and is rel-
evant to local elevation of privilege attacks. The au-
thors discovered that weak entropy sources are used
for the generation of the cookie. Specifically, they
have found that the cookie for drivers and modules,
but not core kernel components (e.g. ntoskrnl.exe
etc.), is mainly generated via KeTickCount, i.e. the
system tick count value. Based on that they have
calculated the prediction success rate at around
46%.

Windows 7 has also introduced safety checks for
the kernel’s heap allocator to detect corruptions of
its metadata. This was introduced to make harder
the exploitation of traditional generic unlinking at-
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tacks. Such unlinking attacks can be exploited us-
ing fake allocator chunks to trigger an arbitrary
write-4 primitive. Microsoft’s implemented miti-
gation in Windows 7 is similar to safe unlinking
present in other memory allocators. Specifically,
the mitigation is the one presented in Listing 5.

The pool implementation of the Windows 7 ker-
nel has been recently attacked with five different
methods [6]. In the first one the fact that the
safe unlinking implementation does not validate the
LIST ENTRY of the pool chunk being unlinked,

but of the ListHeads the chunk belongs to is ex-
ploited. The second attack is about lookaside (sin-
gle linked) lists in the kernel used for small pool
chunks and are not checked for validity. Simi-
larly, the third attack is about PendingFree (sin-
gle linked) lists used for pool chunks waiting to
be freed and are also not checked. In the forth
attack exploitation is achieved via the PoolIndex
value of the POOL DESCRIPTOR structure that
is not checked and can be corrupted to point to an
attacker-mapped NULL page. The fifth attack is
about the corruption of pool chunk pointers to a
process object used for reporting usage quota.

NULL page mappings from unprivileged pro-
cesses are allowed by the Windows 7 kernel,
thus making kernel NULL dereferences exploitable.
Also, the Windows 7 kernel does not have full
ASLR for important kernel structures (e.g.: page
tables/directories), but has a kind of poor man’s
ASLR for drivers and nt/hal. The Windows NT
kernel (ntkrpamp.exe on SMP+PAE, or generally
nt) exports many functions that are useful during
the development of kernel mode shellcode. There-
fore, the base address of nt needs to be found
dynamically before the developed kernel shellcode
uses functions of the nt component. One mecha-
nism to achieve this is “scandown” [7].

4.3 Mac OS X

Regarding the Mac OS X operating system we focus
on Snow Leopard and specifically version 10.6.6.
Snow Leopard by default has a 64-bit userland on
a 32-bit kernel, however it can be forced to boot
a 64-bit kernel. One of the default security fea-
tures of Snow Leopard that can hinder some ker-
nel level exploitation approaches is “Secure virtual
memory” which is basically encryption for swap.
Snow Leopard has no kernel stack smashing protec-

tions and no kernel memory allocator protections.
However, one of the design choices of the operating
system helps in avoiding the exploitation of kernel
NULL pointer dereferences. Specifically, Mac OS
X has separated kernel and process address spaces,
contrary to operating systems that have the kernel
mapped at the virtual address space of every pro-
cess. This means that userland addresses cannot
be dereferenced from kernel memory. NULL page
mapping from unprivileged processes are allowed
but are irrelevant for kernel exploitation purposes.
Furthermore, due to this fact userland addresses
cannot be used during exploit development for stor-
ing fake structures/shellcode/etc.

Snow Leopard also has some minor inconve-
niences for the attacker. Specifically, the sysent
(BSD system call table) symbol is not exported.
However, a) it can be dynamically recovered eas-
ily and b) the mach trap table (Mach system calls)
symbol is exported by default. Our tests have also
demonstrated that the sysent table is at read-only
kernel pages (and the same is true for the kernel
pages of the system calls it points to). On the
other hand, the mach trap table is at writable ker-
nel pages, however the Mach system calls it points
to are at pages marked as read-only.

4.4 FreeBSD

The FreeBSD operating system has a number of
kernel exploitation mitigations since release 8.0.
Kernel stack-smashing protection is implemented
via ProPolice/SSP. Specifically, in the sys/kern/s-
tack protector.c file the functions stack chk init()
and stack chk fail() are implemented. The event
handler stack chk init() generates a random ca-
nary value on system boot. The canary is placed
between a protected kernel function’s local vari-
ables and saved frame pointer. During the func-
tion’s epilogue the canary is checked against its
original value. If it has been altered the kernel
calls stack chk fail() which calls panic(9) bring-
ing down the whole system.

The canary is generated with the arc4rand func-
tion which is a random number generator based
on the key stream generator of RC4. This is peri-
odically reseeded with entropy from a 256-bit vari-
ant of the Yarrow random number generator imple-
mented in the kernel. Yarrow collects entropy from
hardware interrupts among other sources. The fact
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Listing 5: Windows Safe Unlinking
SafeUnl ink ( Entry )
{

. . .
F l ink = Entry−>Fl ink ; // what
Bl ink = Entry−>Blink ; // where
i f ( Fl ink−>Blink != Entry ) KeBugCheckEx ( ) ;
i f ( Blink−>Fl ink != Entry ) KeBugCheckEx ( ) ;
Blink−>Fl ink = Fl ink ; // ∗( where ) = what
Flink−>Blink = Blink ; // ∗(what + 4) = where
. . .

}

Figure 7: Variable reordering in the FreeBSD ker-
nel by ProPolice/SSP

that FreeBSD’s /dev/random never blocks (like
Linux’s /dev/urandom device) may lead and has
led to uniformity flaws [8]. As an example con-
sider a vulnerability published in 2008 which ex-
plains how Yarrow provided inadequate entropy to
the kernel during boot time [9].

ProPolice/SSP also performs variable reordering.
It places local variables below local stack buffers
and function pointer arguments below local vari-
ables. This means that local variables are placed at
lower addresses from local stack buffers and func-
tion pointer arguments at lower addresses from lo-
cal variables. An example of the above is shown in
Fig. 7.

RedZone is oriented more towards debugging
FreeBSD’s kernel memory allocator (UMA - Uni-

versal Memory Allocator) rather than exploita-
tion mitigation. RedZone is disabled by default,
the kernel needs to be recompiled with the option
DEBUG REDZONE in order to enable it. Red-
Zone places guard buffers above and below each
allocation done via UMA. If the guard buffers
are corrupted via an overflow or an underflow
then the RedZone implementation calls panic(9).
FreeBSD also has protection against unprivileged
NULL page mappings. The sysctl(8) variable secu-
rity.bsd.map at zero is enabled by default and for-
bids mappings of the first page, but allows map-
pings above that.

4.5 iOS

iOS is Apple’s marketing name for the iPhone OS
and is directly based on the Mac OS X kernel.
It uses a trusted boot process to make sure the
firmware has not been altered in any way. Fur-
thermore, it uses code signing of system and ap-
plication binaries in order to avoid execution of
untrusted code. iOS uses sandboxing to limit ac-
cess to certain parts of the filesystem and system
calls. In the userland side of things, iOS has non-
executable stack and heap protections enabled by
default. However, the absence of ASLR has led to
return-oriented-programming (ROP) exploits. The
absence of kernel mode protections has led to ker-
nel exploits invoked via ROP sequences to bypass
code signing. These kernel exploits were used to
make jailbreaks persistent after device reboots by
disabling code signing protections [10].
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$ arm-linux-androideabi-nm libra.ko | \

grep __stack_chk_fail

$

Figure 8: Looking for stack canaries in an Android
module

4.6 Android

Google’s Android operating system is based on the
Linux kernel version 2.6.29 and above. Android
targets mainly ARM hardware mobile phone de-
vices, however, the ARM platform’s security fea-
tures are not used by Android. Specifically, the
ARM’s Digital Rights Management (DRM) imple-
mentation called TrustZone is not used in any way
[11]. Similarly, ARM’s page-level execution pro-
tection (XN – eXecute Never) is also not used by
Android. In userland, Android applications require
permissions for high-level tasks, for example outgo-
ing and incoming network connections. However,
once a user has agreed to install an application,
thus accepting to grant it all the permissions it
requires, this application becomes enabled to ex-
ecute native code on the device. Subsequently, it
can execute kernel exploits to acquire root privi-
leges and completely control the mobile phone. The
Android kernel does not use protections available
in the mainline Linux kernel that would enable to
protect itself from such privilege escalations. For
example, the terminal output in Fig. 8 indicates
the absence of stack canaries.

5 Bypassing Kernel Protec-
tions

There are some generic ways to bypass kernel ex-
ploitation mitigations; we discuss them in this sec-
tion. Canary values on the stack can be found via
memory leaks. For the per-LWP canaries on Linux,
a same thread leak is required. Ben Hawkes’ byte-
by-byte canary brute forcing [12] is not applicable
in kernel context since kernels panic after a failed
guessing attempt. Bypassing NULL page mapping
protections requires direct or indirect control of the
dereference offset of a kernel pointer. Finally, red
zone type kernel heap protections, like those found
in Linux and FreeBSD, can be bypassed by over-

writing the guards with the right values, which are
static and known.

6 Conclusion

In conclusion it can be said that although oper-
ating system kernels implement basic proactive
security measures, they mostly depend on the
quality of their code. Mitigation technologies for
kernels will continue to improve albeit slowly since
performance impact is a major concern. Despite
the available protections the size and complexity
of kernels suggests a continuation of exploitable
security problems.
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