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Abstract 

In an effort to deal with performance challenges in the Android ecosystem, Google has made an investment 
aiming to fully replace the old JIT Dalvik VM with the brand new AOT (Ahead-Of-Time) ART runtime. It 
has been more than a year since ART was open-sourced and its first production releases are reaching the 
market. However, there is currently almost zero public knowledge about the security maturity of ART and its 
interfacing functionality. 

This talk is the first milestone of a greater research effort aiming to analyze all of the new ART runtime 
internals, depict the exploitation impact of identified bugs in the Android ecosystem and mark the 
requirements for the development of new tools. To assist this analysis, the first DEX file format smart fuzzing 
engine has been implemented supporting a series of rulesets mirroring the various fuzzing requirements. The 
input generation and fuzzing toolset we have developed run directly on Android devices and monitor the 
investigated processes. 

DEX smart fuzzing techniques and evaluation metrics will be presented against the initial target of the ART 
runtime, which is the bytecode optimization and compilation chain (DEX parser, IR processing & code 
generation) for the ARM architecture. In order to prove the efficiency of our smart fuzzing techniques, we 
compare our results against dumb fuzzing iterations with identical characteristics. 
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Introduction 

ART has become the default (and only supported) runtime since version 5.0 (Lollipop) of the Android 
operating system, aiming to greatly improve execution performance of Java applications. ART was firstly 
introduced in October 2013 at Android KitKat release as a beta option available for supported devices under 
development mode. While being open-sourced for more than a year, very limited knowledge exists about the 
security maturity of ART components and their interfacing functionality in the Android ecosystem. In an 
effort to fill this knowledge gap a large research project has been started aiming to analyze the new runtime 
against its three major functionalities: Compilation (bytecode optimization), Runtime Initialization and 
Runtime Execution. 

The ART Dalvik bytecode (DEX) compilation process is the first milestone of this research project. To assist 
our source code review and functional analysis, we have developed a new fuzzing framework highly optimized 
for Android devices. DEX file format smart fuzzing techniques have been developed under this framework 
aiming to get better security testing coverage for the target ART compilation chain units. The core fuzzing tool 
components (data generation & executors) have been designed using native C code aiming to run efficiently on 
the low-resource target devices. 

This paper describes the design decisions behind the ART fuzzing framework components, the evaluation 
metrics used to improve the fuzzing framework’s performance and the initial results from the fuzzing process. 

 

Previous Work 

There is very little previous work from the information security community that has been published on ART 
components security. The most noticeable publications are the following: 

n dexFuzz project (Stephen Kyle, ARM) 
n State of the ART: Exploring the New Android KitKat Runtime (Paul Sabanal, HITB2014AMS, IBM X-

Force) 
n Hiding Behind ART (Paul Sabanal BHASIA2015, IBM X-Force) 
n Android Internals: A Confectioner's Cookbook (Jonathan Levin) 
n Introduction to Android 5 Security (Lukas Aron, Petr Hanacek) 
n The State of ASLR on Android Lollipop (Daniel Micay, COPPERHEAD) 
 

While not being designed for security fuzz testing, the project that drew our attention during framework 
development is the recently released dexFuzz tool. It is the first public DEX structural mutations tool that has 
been designed to detect ART compiler errors using differential testing techniques. dexFuzz has been merged to 
AOSP upstream and is available under the master development branch. 
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ART Runtime Basics 

Within this section we provide the reader a brief overview of the ART components and the essential 
background information required to understand our implementation approaches of the DEX smart fuzzing 
and the framework itself. Since the out-of-process fuzzing executors are designed to run on the device, we have 
chosen a system-oriented approach for this introduction. A detailed analysis of all ART components and 
supported file formats is outside of the scope of this paper. 

One of the first user-mode components that are executed after system has successfully booted, is the system 
ART runtime initialization. Figure-1 illustrates the basic functions that are invoked as part of the root Zygote 
process initialization. 

 

Figure 1 - System runtime initialization flow 

 

ImageSpace class in libart will detect the current state of system image files and will continue with the creation 
(dex2oat) or delta repair (patchoat) actions if dalvik-cache does not contain a valid version of the required files. 

While the previous Dalvik runtime was relying on JIT compilation techniques to optimize DEX bytecode 
execution, ART is using a series of AOT (Ahead-Of-Time) techniques to pre-optimize bytecode into native 
code at installation time (before execution). dex2oat is the main compile driver tool developed for ART to 
complete this process for the supported target architectures (ARM, ARM64, x86, x86_64, MIPS, MIPS64). 
The compile driver is invoked with a series of compilation & runtime configuration arguments which control 
the optimization and execution context of the bytecode. 
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ART supports two compiler backends in libart-compiler, Quick and Optimizing. As illustrated in Figure-2, 
Quick backend is using two intermediate representations (IR) to apply the various optimization iterations 
before invoking the code generation process. Quick has been designed to be reliable and fast sacrificing native 
code performance. On the other hand Optimizing backend is using a single IR graph where multiple 
optimization passes are invoked against, aiming for better performance at generated code. At the time of 
writing, Quick backend is the current default option, while Optimizing backend is still under heavy 
development. 

 

Figure 2 - Bytecode optimization process 

 

With an exception of some optimization related instruction opcodes1 used during internal dex-to-dex transformation 
steps, ART is compatible with the old Dalvik executables2. DEX file format has 18 basic sections (not all of them 
are mandatory) and is heavily using relative referencing between items of these sections and their inner encoded data 
tables. Members of items on each section or encoded inner blob can be categorized into four representative groups: 

1. Index (_idx) references to items in other sections 
2. Relative offset (_off) references to items in other sections 
3. Data placeholders (mostly of implicit size) 
4. Attribute metadata (from predefined enumeration lists with accepted values) 

 

Figure-3 illustrates an example of section items references for some of mandatory sections. 

                                                
1 https://github.com/anestisb/oatdump_plus#dalvik-opcode-changes-in-art 
2 https://source.android.com/devices/tech/dalvik/dex-format.html 
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Figure 3 - DEX file format structure references example from some basic sections 

  

Fuzzing Framework Design 

The first step when designing an out-of-process fuzzing project is to identify the target library binaries and a 
driver executable that consumes them. Considering that ART has only one (so far) compiler driver (dex2oat), 
the fuzzing target executable was easily defined. dex2oat is dynamically linked to both libart and libart-compiler 
libraries and is capable to trigger all supported DEX optimization configurations that we want to fuzz test. 

Having identified the target executable, the next step is to select the target platform architecture. Since dex2oat 
supports cross-compilation our first thought was to utilize ART host tools (Linux or Darwin) and benefit from 
a more powerful environment compared to the Android OS ARM/ARM64 or x86/x86_64 devices. After a 
quick source code analysis this plan has been abandoned due to the different memory layout of the ART host 
tools. Some noticeable examples are the base libc heap allocator and the emulated ashmem (Android shared 
memory). As a result we turned our focus into native Android OS devices. Considering that device runtime 
ISA (kRunrtimeISA flag in source code) affects compilation and runtime attributes of ART (different 
instruction set features, ART threads stack layout, etc.), we have decided to work against ARM devices since 
they have the biggest market share of Android OS devices. Android QEMU emulator for ARM has been also 
disqualified as an acceptable option due to different CPU variant (generic) that affects compilation attributes, 
and its poor performance. 

With the target environment configuration having been defined the final design step was to decide on the 
fuzzing strategy. Building upon the decision to execute core fuzzing actions against native ARM devices, 
significantly better execution performance can be achieved by generating the test data also on the target device. 
On a different scenario campaigns will face a huge I/O overhead between host and target. 

Test data generation can be achieved by following either a mutation-based or a generation-based approach. 
Mutation fuzzing techniques (random, block-based, ruleset-based, etc.) are applying a series of mangling 
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routines against a valid (for the target) set of existing input data. On the other hand generation-based fuzzing 
tools are using as an input a complete grammar or model capable to describe the target data structure in order 
to generate the test cases. Based on our team’s previous experience with executable file formats fuzzing 
projects and considering the low-resource system that data generation engine will run, we decided to proceed 
with a mutation-based approach. In an effort to improve the mutations efficiency against the target ART 
compiler, data mangling algorithms have been designed to honor part of the basic DEX file structure 
requirements. Evolution of these algorithms (smart mutation rules) is achieved in a manual way by analyzing 
the feedback data that have been collected from the learning campaigns (Figure-4). 

Fuzzing framework components can be divided into two levels: target device and host. Target device level 
incorporates the data generation engine, the fuzzing core and a set of post-running helper tools (crash verifier, 
minimizer, etc.). The fuzzing core implementation relies on a fork() – exec() approach to spawn the fuzzing 
executors and utilizes POSIX signals to detect abnormal process termination. At the host level we have the 
AOSP build server to generate the appropriate build type (coverage, ASAN, etc.) for the target device and the 
crashes classifier component. Crash classifier is utilizing remote GDB and supported python scripting to debug 
generated crash triggers in an effort to detect unique crashes and annotate some of their characteristics. Unique 
crashes are detected by generating a backtrace hash signature for each verified file. 

 

 

Figure 4 - Learning phase 
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Figure 5 - Execution phase 

 

Measuring Performance 

In order to measure the fuzzing executors’ performance two well-known techniques from software testing are 
used: code-coverage and execution hit counters. Code coverage data aim to measure the percentage of source 
code that has been reached (executed) by the fuzzing campaigns. While this information offered a valuable 
input for the mutation rule-sets evolution, our experiments quickly identified that it is not capable on its own 
to reliably measure the fuzzer’s performance due to extensive DEX input validation applied by ART before 
bytecode optimization. As a result hit counter data have been collected for all DEX validation driver routines 
in order to accurately measure the percentage of mutated data that had successfully passed them. 

Since AOSP (Android Open Source Project) is using the GCC cross-compile toolchain to build Android for 
ARM devices, we have used the built-in GCOV code coverage functionality to create ART profiling builds for 
the target Nexus devices in our lab. Per-iteration generated coverage data had to be collected and transferred 
from the device to the host, since the basic-block reconstruction metadata (.gcno files) are stored in the host 
(cross-profiling). The lcov tool is used to convert GCOV coverage data into usable data blobs for automated 
analysis. Finally genhtml tool has been also used to generate visual coverage reports for the purposes of this 
paper. 
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Mutation Rules Evolution 

As part of our initial framework we developed a random mutation engine prototype to examine the behavior 
of a completely blind (dumb) fuzzing approach. Considering the basic DEX file structure we have excluded the 
DEX header from the mutated data. Additionally, a post-mangle CRC repair function has been implemented 
to patch the file checksum in the file header before executor invokes the target dex2oat binary. As illustrated 
by Figure-6 and Figure-7, a dumb fuzzing approach is exercising less than 1/3 of the code, compared to the 
coverage of the original seeds that were used as input for the random mutations. These poor results of random 
mutations led us to develop a series of DEX smart fuzzing rules in order to efficiently fuzz the ART compiler. 

 

Figure 6 - Code coverage of original seed DEX files for QUICK & OPTIMIZING backends 

 

Figure 7 - Code coverage using random mutations for QUICK & OPTIMIZING backends 

 

Considering the complexity and large scale of the DEX section item references, we expect that an equally 
extensive verification process must be executed by the runtime prior to processing any input DEX files. A 
closer look at a dex2oat systrace capture (as illustrated in Figure-8) while compiling a single DEX file 
demonstrates that significant time is consumed during the DEX file open and class verify stages, indicating a two 
layer DEX file verification process. 



© 2015 CENSUS S.A. 
9 

 

Figure 8 - Systrace of dex2oat for a single DEX file in a 4core device 

 

The first DEX verification layer (DexFileVerifier::Verify()) is executed by the main thread as part of the open file 
action and is responsible of applying a series of quick static checks against the input file. These initial checks 
aim to verify the basic attributes of the file header (CRC, size, presence of mandatory sections, etc.) and to 
ensure that all relative references are complying to the file structure rules (CheckIntraSection() and 
CheckInterSection()). The second layer (MethodVerifier::VerifyMethod()) is executed in parallel from the worker 
threads during the class verification step. Layer2 is performing a deeper investigation by applying static and 
control-flow analysis against all class methods code items. Parallelization for class verification, initialization 
and compilation action occurs on the class level from a pool of POSIX pthreads. 

Our initial attempt to introduce intelligence to DEX file mutation algorithms was to write a dedicated data 
mangling rule for 16 out of the 18 basic file sections. FileHeader and MapList are the two sections that have 
been excluded due to the nature of their data. The mutation routine of each rule limits the data generated to 
those that are appropriate for the matching section. Section ranges (start offset and size) are extracted from 
input seed files as part of the pre-parsing process using the information stored in MapList section. The MapList 
table includes an entry for each section item, storing the section’s start relative offset and size in items. Table-1 
and Table-2 demonstrate the achieved code coverage and DEX file verifier success ratio for section mutation 
rule developed during the first learning phase. 

Results indicate that coverage performance has been significantly improved compared to random dumb 
mutations. However, the average DEX verifier success ratio is still very poor for most of the sections due to 
relative referencing violations. In order to further improve mutation algorithms an additional set of inner and 
combinational rules has been created as part of learning phase2. More specifically the sections’ external 
structure has been honored during data mangling forcing altered data to conform to the referenced target 
range. For example if the class_idx member of a classDef item has been marked for mangling, the mutation 
algorithm is ensuring that new class_idx value will be within the accepted range of typeIds section. These inner 
rules can be then further chained together creating more complex mutation algorithms that still honor the 
biggest part of the file structural dependencies. Table-3 and Table-4 demonstrate the improved DEX verifier 
level1 and level2 success ratio for 6 rule-groups that have been promoted for phase2 due to their coverage 
efficiency. Each table entry includes the average hit ratio after a random choice of supported inner rule for 5K 
iterations. 
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Table 1 - Level1 mutation rules code coverage for QUICK & OPTIMIZING backends 

	
  	
   Quick	
   Optimizing	
  
Ruleset	
   Lines	
   Functions	
   Branches	
   Lines	
   Functions	
   Branches	
  
Original	
   24.80%	
   28.80%	
   11.30%	
   32.60%	
   40.30%	
   14.20%	
  
Dumb	
   5.60%	
   10.60%	
   2.00%	
   5.60%	
   10.60%	
   2.00%	
  
stringIdItems	
   23.80%	
   28.50%	
   10.40%	
   31.20%	
   39.50%	
   13.10%	
  
typeIdItems	
   23.90%	
   28.50%	
   10.60%	
   31.50%	
   39.70%	
   13.40%	
  
protoIdItems	
   24.70%	
   28.80%	
   11.20%	
   32.30%	
   40.10%	
   14.00%	
  
fieldIdItems	
   24.70%	
   28.80%	
   11.20%	
   32.20%	
   40.10%	
   14.00%	
  
methodIdItems	
   24.70%	
   28.80%	
   11.20%	
   32.00%	
   39.90%	
   13.80%	
  
classDefItems	
   24.80%	
   28.80%	
   11.30%	
   32.40%	
   40.10%	
   14.10%	
  
typeList	
   24.70%	
   28.80%	
   11.20%	
   32.20%	
   40.10%	
   13.90%	
  
annotationSetRefList	
   24.50%	
   28.70%	
   11.20%	
   32.30%	
   40.10%	
   14.00%	
  
annotationSetItems	
   24.50%	
   28.70%	
   11.10%	
   31.90%	
   39.90%	
   13.80%	
  
classDataItems	
   24.50%	
   28.70%	
   11.00%	
   32.10%	
   39.90%	
   13.80%	
  
codeItems	
   25.10%	
   28.90%	
   11.40%	
   32.80%	
   40.30%	
   14.30%	
  
stringDataItems	
   24.40%	
   28.70%	
   10.90%	
   32.10%	
   40.00%	
   13.80%	
  
debugInfoItems	
   24.70%	
   28.80%	
   11.30%	
   32.50%	
   40.20%	
   14.20%	
  
annotationItems	
   24.60%	
   28.70%	
   11.20%	
   32.40%	
   40.20%	
   14.10%	
  
encodedArrayItems	
   24.90%	
   28.90%	
   11.40%	
   32.70%	
   40.30%	
   14.30%	
  
annotationsDirectoryItems	
   24.40%	
   28.70%	
   11.00%	
   32.30%	
   40.10%	
   13.90%	
  

 

Table 2 - Level1 mutation rules DEX verify levels success & fail ratio hit counters for QUICK & OPTIMIZING backends 

	
  	
   Quick	
   Optimizing	
  
Ruleset	
   Level1	
   Level2	
   Level1	
   Level2	
  
	
  	
   PASSED	
   HRD	
  FAIL	
   SFT	
  FAIL	
   PASSED	
   HRD	
  FAIL	
   SFT	
  FAIL	
  
Original	
   100.00%	
   0.00%	
   1.58%	
   100.00%	
   0.00%	
   1.58%	
  
Dumb	
   0.00%	
   -­‐	
   -­‐	
   0.00%	
   -­‐	
   -­‐	
  
stringIdItems	
   0.14%	
   0.29%	
   7.72%	
   0.32%	
   0.00%	
   5.33%	
  
typeIdItems	
   0.42%	
   0.00%	
   0.15%	
   0.30%	
   0.00%	
   0.72%	
  
protoIdItems	
   12.64%	
   0.00%	
   2.58%	
   12.14%	
   0.00%	
   1.78%	
  
fieldIdItems	
   8.72%	
   0.06%	
   1.06%	
   8.60%	
   0.06%	
   0.72%	
  
methodIdItems	
   6.22%	
   0.32%	
   1.19%	
   6.34%	
   0.33%	
   1.01%	
  
classDefItems	
   25.18%	
   0.02%	
   1.27%	
   25.46%	
   0.02%	
   1.03%	
  
typeList	
   4.58%	
   0.00%	
   1.23%	
   4.14%	
   0.00%	
   1.81%	
  
annotationSetRefList	
   4.38%	
   0.00%	
   1.53%	
   4.34%	
   0.00%	
   1.31%	
  
annotationSetItems	
   0.78%	
   0.00%	
   10.58%	
   0.50%	
   0.00%	
   8.15%	
  
classDataItems	
   3.82%	
   0.12%	
   0.77%	
   3.76%	
   0.08%	
   1.91%	
  
codeItems	
   44.02%	
   1.11%	
   1.32%	
   42.52%	
   1.08%	
   1.58%	
  
stringDataItems	
   6.88%	
   0.00%	
   1.18%	
   7.26%	
   0.01%	
   0.92%	
  
debugInfoItems	
   45.20%	
   0.00%	
   1.41%	
   46.04%	
   0.00%	
   1.96%	
  
annotationItems	
   9.62%	
   0.00%	
   5.87%	
   10.06%	
   0.00%	
   6.39%	
  
encodedArrayItems	
   55.80%	
   0.00%	
   1.61%	
   55.74%	
   0.00%	
   1.81%	
  
annotationsDirectoryItems	
   0.40%	
   0.00%	
   4.03%	
   0.60%	
   0.00%	
   6.08%	
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Table 3 – Phase2: DEX verify level1 success ratio for sample random inner rule per section and annotations chain rule 

	
  	
   Quick	
   Optimizing	
  
Ruleset	
   Phase1	
   Phase2	
   Phase1	
   Phase2	
  
protoIdItems	
   12.64%	
   12.79%	
   12.14%	
   13.78%	
  
fieldIdItems	
   8.72%	
   31.47%	
   8.60%	
   32.06%	
  
methodIdItems	
   6.22%	
   38.72%	
   6.34%	
   38.78%	
  
classDefItems	
   25.18%	
   37.35%	
   25.46%	
   37.26%	
  
codeItems	
   44.02%	
   92.30%	
   42.52%	
   97.80%	
  
annotations_chain	
   -­‐	
   22.98%	
   -­‐	
   22.54%	
  

 

Table 4 – Phase3: DEX verify level2 fail ratio for sample random inner rule per section and annotation chain rule 

	
  	
   Quick	
   Optimizing	
  
Ruleset	
   Phase1	
   Phase2	
   Phase1	
   Phase2	
  

	
  	
   HARD	
  FAIL	
   HARD	
  FAIL	
   HARD	
  FAIL	
   HARD	
  FAIL	
  
protoIdItems	
   0.00%	
   0.49%	
   0.00%	
   0.91%	
  
fieldIdItems	
   22.74%	
   38.30%	
   17.99%	
   35.90%	
  
methodIdItems	
   22.85%	
   47.76%	
   24.64%	
   45.12%	
  
classDefItems	
   0.74%	
   15.98%	
   0.70%	
   17.38%	
  
codeItems	
   86.56%	
   15.60%	
   86.33%	
   15.34%	
  
annotations_chain	
   -­‐	
   0.00%	
   -­‐	
   0.00%	
  

 

Fuzzing Results 

ART fuzz testing has been conducted against 4 Google Nexus devices (1 x N4, 2 x N5, 1 x N6) using the latest 
(at the time of writing) 5.1.x Android OS production release and AOSP master branch under ART commit 
#8e8bb8a (April 16, 2015). The Nexus4 device has not been tested under master AOSP branches due to small 
compatibility issues that were left unresolved during our analysis. Clang Address Sanitizer instrumentation 
builds have been generated only for the ART master branch against the same commit. 

Table-5 and Table-6 demonstrate the number of unique (major or major + minor) identified bugs for each 
device. The number of bugs listed under the optimizing column are unique to the optimizing compiler and do 
not include bugs that have been triggered due to quick compiler failover. Additionally, Figure-9 and Figure-10 
summarize vulnerability types for the crash triggers that have been analyzed so far by our team. 
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Table 5 Android 5.1.x unique crashes 

Device	
   QUICK	
   OPTIMIZING	
  
	
  	
   Major	
   Major.Minor	
   Major	
   Major.Minor	
  
Nexus4	
   22	
   34	
   17	
   24	
  
Nexus5	
   31	
   49	
   23	
   28	
  
Nexus6	
   36	
   52	
   26	
   32	
  

 

Table 6 - Android master ART commit #8e8bb8a unique crashes 

Device	
   QUICK	
   OPTIMIZING	
  
	
  	
   Major	
   Major.Minor	
   Major	
   Major.Minor	
  
Nexus5	
   27	
   49	
   18	
   32	
  
Nexus5	
  ASAN	
   9	
   15	
   13	
   17	
  
Nexus6	
   32	
   58	
   14	
   23	
  
Nesus6	
  ASAN	
   13	
   25	
   9	
   13	
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Figure 10 – Vuln. types for QUICK compiler Figure 9 – Vuln. types percentage for OPTIMIZING compiler 
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