
Anestis Bechtsoudis

Security Engineer – CENSUS S.A.
anestis@census-labs.com

@anestisb

Fuzzing Objects d’ART
Digging Into the New Android L Runtime Internals

Abstract

In an effort to deal with performance challenges in the Android ecosystem, Google has made an investment
aiming to fully replace the old JIT Dalvik VM with the brand new AOT (Ahead-Of-Time) ART runtime. It
has been more than a year since ART was open-sourced and its first production releases are reaching the
market. However, there is currently almost zero public knowledge about the security maturity of ART and its
interfacing functionality.

This talk is the first milestone of a greater research effort aiming to analyze all of the new ART runtime
internals, depict the exploitation impact of identified bugs in the Android ecosystem and mark the
requirements for the development of new tools. To assist this analysis, the first DEX file format smart fuzzing
engine has been implemented supporting a series of rulesets mirroring the various fuzzing requirements. The
input generation and fuzzing toolset we have developed run directly on Android devices and monitor the
investigated processes.

DEX smart fuzzing techniques and evaluation metrics will be presented against the initial target of the ART
runtime, which is the bytecode optimization and compilation chain (DEX parser, IR processing & code
generation) for the ARM architecture. In order to prove the efficiency of our smart fuzzing techniques, we
compare our results against dumb fuzzing iterations with identical characteristics.

© 2015 CENSUS S.A.
2

Introduction

ART has become the default (and only supported) runtime since version 5.0 (Lollipop) of the Android
operating system, aiming to greatly improve execution performance of Java applications. ART was firstly
introduced in October 2013 at Android KitKat release as a beta option available for supported devices under
development mode. While being open-sourced for more than a year, very limited knowledge exists about the
security maturity of ART components and their interfacing functionality in the Android ecosystem. In an
effort to fill this knowledge gap a large research project has been started aiming to analyze the new runtime
against its three major functionalities: Compilation (bytecode optimization), Runtime Initialization and
Runtime Execution.

The ART Dalvik bytecode (DEX) compilation process is the first milestone of this research project. To assist
our source code review and functional analysis, we have developed a new fuzzing framework highly optimized
for Android devices. DEX file format smart fuzzing techniques have been developed under this framework
aiming to get better security testing coverage for the target ART compilation chain units. The core fuzzing tool
components (data generation & executors) have been designed using native C code aiming to run efficiently on
the low-resource target devices.

This paper describes the design decisions behind the ART fuzzing framework components, the evaluation
metrics used to improve the fuzzing framework’s performance and the initial results from the fuzzing process.

Previous Work

There is very little previous work from the information security community that has been published on ART
components security. The most noticeable publications are the following:

n dexFuzz project (Stephen Kyle, ARM)
n State of the ART: Exploring the New Android KitKat Runtime (Paul Sabanal, HITB2014AMS, IBM X-

Force)
n Hiding Behind ART (Paul Sabanal BHASIA2015, IBM X-Force)
n Android Internals: A Confectioner's Cookbook (Jonathan Levin)
n Introduction to Android 5 Security (Lukas Aron, Petr Hanacek)
n The State of ASLR on Android Lollipop (Daniel Micay, COPPERHEAD)

While not being designed for security fuzz testing, the project that drew our attention during framework
development is the recently released dexFuzz tool. It is the first public DEX structural mutations tool that has
been designed to detect ART compiler errors using differential testing techniques. dexFuzz has been merged to
AOSP upstream and is available under the master development branch.

© 2015 CENSUS S.A.
3

ART Runtime Basics

Within this section we provide the reader a brief overview of the ART components and the essential
background information required to understand our implementation approaches of the DEX smart fuzzing
and the framework itself. Since the out-of-process fuzzing executors are designed to run on the device, we have
chosen a system-oriented approach for this introduction. A detailed analysis of all ART components and
supported file formats is outside of the scope of this paper.

One of the first user-mode components that are executed after system has successfully booted, is the system
ART runtime initialization. Figure-1 illustrates the basic functions that are invoked as part of the root Zygote
process initialization.

Figure 1 - System runtime initialization flow

ImageSpace class in libart will detect the current state of system image files and will continue with the creation
(dex2oat) or delta repair (patchoat) actions if dalvik-cache does not contain a valid version of the required files.

While the previous Dalvik runtime was relying on JIT compilation techniques to optimize DEX bytecode
execution, ART is using a series of AOT (Ahead-Of-Time) techniques to pre-optimize bytecode into native
code at installation time (before execution). dex2oat is the main compile driver tool developed for ART to
complete this process for the supported target architectures (ARM, ARM64, x86, x86_64, MIPS, MIPS64).
The compile driver is invoked with a series of compilation & runtime configuration arguments which control
the optimization and execution context of the bytecode.

© 2015 CENSUS S.A.
4

ART supports two compiler backends in libart-compiler, Quick and Optimizing. As illustrated in Figure-2,
Quick backend is using two intermediate representations (IR) to apply the various optimization iterations
before invoking the code generation process. Quick has been designed to be reliable and fast sacrificing native
code performance. On the other hand Optimizing backend is using a single IR graph where multiple
optimization passes are invoked against, aiming for better performance at generated code. At the time of
writing, Quick backend is the current default option, while Optimizing backend is still under heavy
development.

Figure 2 - Bytecode optimization process

With an exception of some optimization related instruction opcodes1 used during internal dex-to-dex transformation
steps, ART is compatible with the old Dalvik executables2. DEX file format has 18 basic sections (not all of them
are mandatory) and is heavily using relative referencing between items of these sections and their inner encoded data
tables. Members of items on each section or encoded inner blob can be categorized into four representative groups:

1. Index (_idx) references to items in other sections
2. Relative offset (_off) references to items in other sections
3. Data placeholders (mostly of implicit size)
4. Attribute metadata (from predefined enumeration lists with accepted values)

Figure-3 illustrates an example of section items references for some of mandatory sections.

1 https://github.com/anestisb/oatdump_plus#dalvik-opcode-changes-in-art
2 https://source.android.com/devices/tech/dalvik/dex-format.html

© 2015 CENSUS S.A.
5

Figure 3 - DEX file format structure references example from some basic sections

Fuzzing Framework Design

The first step when designing an out-of-process fuzzing project is to identify the target library binaries and a
driver executable that consumes them. Considering that ART has only one (so far) compiler driver (dex2oat),
the fuzzing target executable was easily defined. dex2oat is dynamically linked to both libart and libart-compiler
libraries and is capable to trigger all supported DEX optimization configurations that we want to fuzz test.

Having identified the target executable, the next step is to select the target platform architecture. Since dex2oat
supports cross-compilation our first thought was to utilize ART host tools (Linux or Darwin) and benefit from
a more powerful environment compared to the Android OS ARM/ARM64 or x86/x86_64 devices. After a
quick source code analysis this plan has been abandoned due to the different memory layout of the ART host
tools. Some noticeable examples are the base libc heap allocator and the emulated ashmem (Android shared
memory). As a result we turned our focus into native Android OS devices. Considering that device runtime
ISA (kRunrtimeISA flag in source code) affects compilation and runtime attributes of ART (different
instruction set features, ART threads stack layout, etc.), we have decided to work against ARM devices since
they have the biggest market share of Android OS devices. Android QEMU emulator for ARM has been also
disqualified as an acceptable option due to different CPU variant (generic) that affects compilation attributes,
and its poor performance.

With the target environment configuration having been defined the final design step was to decide on the
fuzzing strategy. Building upon the decision to execute core fuzzing actions against native ARM devices,
significantly better execution performance can be achieved by generating the test data also on the target device.
On a different scenario campaigns will face a huge I/O overhead between host and target.

Test data generation can be achieved by following either a mutation-based or a generation-based approach.
Mutation fuzzing techniques (random, block-based, ruleset-based, etc.) are applying a series of mangling

© 2015 CENSUS S.A.
6

routines against a valid (for the target) set of existing input data. On the other hand generation-based fuzzing
tools are using as an input a complete grammar or model capable to describe the target data structure in order
to generate the test cases. Based on our team’s previous experience with executable file formats fuzzing
projects and considering the low-resource system that data generation engine will run, we decided to proceed
with a mutation-based approach. In an effort to improve the mutations efficiency against the target ART
compiler, data mangling algorithms have been designed to honor part of the basic DEX file structure
requirements. Evolution of these algorithms (smart mutation rules) is achieved in a manual way by analyzing
the feedback data that have been collected from the learning campaigns (Figure-4).

Fuzzing framework components can be divided into two levels: target device and host. Target device level
incorporates the data generation engine, the fuzzing core and a set of post-running helper tools (crash verifier,
minimizer, etc.). The fuzzing core implementation relies on a fork() – exec() approach to spawn the fuzzing
executors and utilizes POSIX signals to detect abnormal process termination. At the host level we have the
AOSP build server to generate the appropriate build type (coverage, ASAN, etc.) for the target device and the
crashes classifier component. Crash classifier is utilizing remote GDB and supported python scripting to debug
generated crash triggers in an effort to detect unique crashes and annotate some of their characteristics. Unique
crashes are detected by generating a backtrace hash signature for each verified file.

Figure 4 - Learning phase

© 2015 CENSUS S.A.
7

Figure 5 - Execution phase

Measuring Performance

In order to measure the fuzzing executors’ performance two well-known techniques from software testing are
used: code-coverage and execution hit counters. Code coverage data aim to measure the percentage of source
code that has been reached (executed) by the fuzzing campaigns. While this information offered a valuable
input for the mutation rule-sets evolution, our experiments quickly identified that it is not capable on its own
to reliably measure the fuzzer’s performance due to extensive DEX input validation applied by ART before
bytecode optimization. As a result hit counter data have been collected for all DEX validation driver routines
in order to accurately measure the percentage of mutated data that had successfully passed them.

Since AOSP (Android Open Source Project) is using the GCC cross-compile toolchain to build Android for
ARM devices, we have used the built-in GCOV code coverage functionality to create ART profiling builds for
the target Nexus devices in our lab. Per-iteration generated coverage data had to be collected and transferred
from the device to the host, since the basic-block reconstruction metadata (.gcno files) are stored in the host
(cross-profiling). The lcov tool is used to convert GCOV coverage data into usable data blobs for automated
analysis. Finally genhtml tool has been also used to generate visual coverage reports for the purposes of this
paper.

© 2015 CENSUS S.A.
8

Mutation Rules Evolution

As part of our initial framework we developed a random mutation engine prototype to examine the behavior
of a completely blind (dumb) fuzzing approach. Considering the basic DEX file structure we have excluded the
DEX header from the mutated data. Additionally, a post-mangle CRC repair function has been implemented
to patch the file checksum in the file header before executor invokes the target dex2oat binary. As illustrated
by Figure-6 and Figure-7, a dumb fuzzing approach is exercising less than 1/3 of the code, compared to the
coverage of the original seeds that were used as input for the random mutations. These poor results of random
mutations led us to develop a series of DEX smart fuzzing rules in order to efficiently fuzz the ART compiler.

Figure 6 - Code coverage of original seed DEX files for QUICK & OPTIMIZING backends

Figure 7 - Code coverage using random mutations for QUICK & OPTIMIZING backends

Considering the complexity and large scale of the DEX section item references, we expect that an equally
extensive verification process must be executed by the runtime prior to processing any input DEX files. A
closer look at a dex2oat systrace capture (as illustrated in Figure-8) while compiling a single DEX file
demonstrates that significant time is consumed during the DEX file open and class verify stages, indicating a two
layer DEX file verification process.

© 2015 CENSUS S.A.
9

Figure 8 - Systrace of dex2oat for a single DEX file in a 4core device

The first DEX verification layer (DexFileVerifier::Verify()) is executed by the main thread as part of the open file
action and is responsible of applying a series of quick static checks against the input file. These initial checks
aim to verify the basic attributes of the file header (CRC, size, presence of mandatory sections, etc.) and to
ensure that all relative references are complying to the file structure rules (CheckIntraSection() and
CheckInterSection()). The second layer (MethodVerifier::VerifyMethod()) is executed in parallel from the worker
threads during the class verification step. Layer2 is performing a deeper investigation by applying static and
control-flow analysis against all class methods code items. Parallelization for class verification, initialization
and compilation action occurs on the class level from a pool of POSIX pthreads.

Our initial attempt to introduce intelligence to DEX file mutation algorithms was to write a dedicated data
mangling rule for 16 out of the 18 basic file sections. FileHeader and MapList are the two sections that have
been excluded due to the nature of their data. The mutation routine of each rule limits the data generated to
those that are appropriate for the matching section. Section ranges (start offset and size) are extracted from
input seed files as part of the pre-parsing process using the information stored in MapList section. The MapList
table includes an entry for each section item, storing the section’s start relative offset and size in items. Table-1
and Table-2 demonstrate the achieved code coverage and DEX file verifier success ratio for section mutation
rule developed during the first learning phase.

Results indicate that coverage performance has been significantly improved compared to random dumb
mutations. However, the average DEX verifier success ratio is still very poor for most of the sections due to
relative referencing violations. In order to further improve mutation algorithms an additional set of inner and
combinational rules has been created as part of learning phase2. More specifically the sections’ external
structure has been honored during data mangling forcing altered data to conform to the referenced target
range. For example if the class_idx member of a classDef item has been marked for mangling, the mutation
algorithm is ensuring that new class_idx value will be within the accepted range of typeIds section. These inner
rules can be then further chained together creating more complex mutation algorithms that still honor the
biggest part of the file structural dependencies. Table-3 and Table-4 demonstrate the improved DEX verifier
level1 and level2 success ratio for 6 rule-groups that have been promoted for phase2 due to their coverage
efficiency. Each table entry includes the average hit ratio after a random choice of supported inner rule for 5K
iterations.

© 2015 CENSUS S.A.
10

Table 1 - Level1 mutation rules code coverage for QUICK & OPTIMIZING backends

	 	 Quick	 Optimizing	
Ruleset	 Lines	 Functions	 Branches	 Lines	 Functions	 Branches	
Original	 24.80%	 28.80%	 11.30%	 32.60%	 40.30%	 14.20%	
Dumb	 5.60%	 10.60%	 2.00%	 5.60%	 10.60%	 2.00%	
stringIdItems	 23.80%	 28.50%	 10.40%	 31.20%	 39.50%	 13.10%	
typeIdItems	 23.90%	 28.50%	 10.60%	 31.50%	 39.70%	 13.40%	
protoIdItems	 24.70%	 28.80%	 11.20%	 32.30%	 40.10%	 14.00%	
fieldIdItems	 24.70%	 28.80%	 11.20%	 32.20%	 40.10%	 14.00%	
methodIdItems	 24.70%	 28.80%	 11.20%	 32.00%	 39.90%	 13.80%	
classDefItems	 24.80%	 28.80%	 11.30%	 32.40%	 40.10%	 14.10%	
typeList	 24.70%	 28.80%	 11.20%	 32.20%	 40.10%	 13.90%	
annotationSetRefList	 24.50%	 28.70%	 11.20%	 32.30%	 40.10%	 14.00%	
annotationSetItems	 24.50%	 28.70%	 11.10%	 31.90%	 39.90%	 13.80%	
classDataItems	 24.50%	 28.70%	 11.00%	 32.10%	 39.90%	 13.80%	
codeItems	 25.10%	 28.90%	 11.40%	 32.80%	 40.30%	 14.30%	
stringDataItems	 24.40%	 28.70%	 10.90%	 32.10%	 40.00%	 13.80%	
debugInfoItems	 24.70%	 28.80%	 11.30%	 32.50%	 40.20%	 14.20%	
annotationItems	 24.60%	 28.70%	 11.20%	 32.40%	 40.20%	 14.10%	
encodedArrayItems	 24.90%	 28.90%	 11.40%	 32.70%	 40.30%	 14.30%	
annotationsDirectoryItems	 24.40%	 28.70%	 11.00%	 32.30%	 40.10%	 13.90%	

Table 2 - Level1 mutation rules DEX verify levels success & fail ratio hit counters for QUICK & OPTIMIZING backends

	 	 Quick	 Optimizing	
Ruleset	 Level1	 Level2	 Level1	 Level2	
	 	 PASSED	 HRD	 FAIL	 SFT	 FAIL	 PASSED	 HRD	 FAIL	 SFT	 FAIL	
Original	 100.00%	 0.00%	 1.58%	 100.00%	 0.00%	 1.58%	
Dumb	 0.00%	 -‐	 -‐	 0.00%	 -‐	 -‐	
stringIdItems	 0.14%	 0.29%	 7.72%	 0.32%	 0.00%	 5.33%	
typeIdItems	 0.42%	 0.00%	 0.15%	 0.30%	 0.00%	 0.72%	
protoIdItems	 12.64%	 0.00%	 2.58%	 12.14%	 0.00%	 1.78%	
fieldIdItems	 8.72%	 0.06%	 1.06%	 8.60%	 0.06%	 0.72%	
methodIdItems	 6.22%	 0.32%	 1.19%	 6.34%	 0.33%	 1.01%	
classDefItems	 25.18%	 0.02%	 1.27%	 25.46%	 0.02%	 1.03%	
typeList	 4.58%	 0.00%	 1.23%	 4.14%	 0.00%	 1.81%	
annotationSetRefList	 4.38%	 0.00%	 1.53%	 4.34%	 0.00%	 1.31%	
annotationSetItems	 0.78%	 0.00%	 10.58%	 0.50%	 0.00%	 8.15%	
classDataItems	 3.82%	 0.12%	 0.77%	 3.76%	 0.08%	 1.91%	
codeItems	 44.02%	 1.11%	 1.32%	 42.52%	 1.08%	 1.58%	
stringDataItems	 6.88%	 0.00%	 1.18%	 7.26%	 0.01%	 0.92%	
debugInfoItems	 45.20%	 0.00%	 1.41%	 46.04%	 0.00%	 1.96%	
annotationItems	 9.62%	 0.00%	 5.87%	 10.06%	 0.00%	 6.39%	
encodedArrayItems	 55.80%	 0.00%	 1.61%	 55.74%	 0.00%	 1.81%	
annotationsDirectoryItems	 0.40%	 0.00%	 4.03%	 0.60%	 0.00%	 6.08%	

© 2015 CENSUS S.A.
11

Table 3 – Phase2: DEX verify level1 success ratio for sample random inner rule per section and annotations chain rule

	 	 Quick	 Optimizing	
Ruleset	 Phase1	 Phase2	 Phase1	 Phase2	
protoIdItems	 12.64%	 12.79%	 12.14%	 13.78%	
fieldIdItems	 8.72%	 31.47%	 8.60%	 32.06%	
methodIdItems	 6.22%	 38.72%	 6.34%	 38.78%	
classDefItems	 25.18%	 37.35%	 25.46%	 37.26%	
codeItems	 44.02%	 92.30%	 42.52%	 97.80%	
annotations_chain	 -‐	 22.98%	 -‐	 22.54%	

Table 4 – Phase3: DEX verify level2 fail ratio for sample random inner rule per section and annotation chain rule

	 	 Quick	 Optimizing	
Ruleset	 Phase1	 Phase2	 Phase1	 Phase2	

	 	 HARD	 FAIL	 HARD	 FAIL	 HARD	 FAIL	 HARD	 FAIL	
protoIdItems	 0.00%	 0.49%	 0.00%	 0.91%	
fieldIdItems	 22.74%	 38.30%	 17.99%	 35.90%	
methodIdItems	 22.85%	 47.76%	 24.64%	 45.12%	
classDefItems	 0.74%	 15.98%	 0.70%	 17.38%	
codeItems	 86.56%	 15.60%	 86.33%	 15.34%	
annotations_chain	 -‐	 0.00%	 -‐	 0.00%	

Fuzzing Results

ART fuzz testing has been conducted against 4 Google Nexus devices (1 x N4, 2 x N5, 1 x N6) using the latest
(at the time of writing) 5.1.x Android OS production release and AOSP master branch under ART commit
#8e8bb8a (April 16, 2015). The Nexus4 device has not been tested under master AOSP branches due to small
compatibility issues that were left unresolved during our analysis. Clang Address Sanitizer instrumentation
builds have been generated only for the ART master branch against the same commit.

Table-5 and Table-6 demonstrate the number of unique (major or major + minor) identified bugs for each
device. The number of bugs listed under the optimizing column are unique to the optimizing compiler and do
not include bugs that have been triggered due to quick compiler failover. Additionally, Figure-9 and Figure-10
summarize vulnerability types for the crash triggers that have been analyzed so far by our team.

© 2015 CENSUS S.A.
12

Table 5 Android 5.1.x unique crashes

Device	 QUICK	 OPTIMIZING	
	 	 Major	 Major.Minor	 Major	 Major.Minor	
Nexus4	 22	 34	 17	 24	
Nexus5	 31	 49	 23	 28	
Nexus6	 36	 52	 26	 32	

Table 6 - Android master ART commit #8e8bb8a unique crashes

Device	 QUICK	 OPTIMIZING	
	 	 Major	 Major.Minor	 Major	 Major.Minor	
Nexus5	 27	 49	 18	 32	
Nexus5	 ASAN	 9	 15	 13	 17	
Nexus6	 32	 58	 14	 23	
Nesus6	 ASAN	 13	 25	 9	 13	

6%

41%
44%

2% 7%

Bug Types QUICK

OOB Read

OOB Write

NULL-Deref

UAF

Unknown

1%

33%

55%

3% 8%

Bug Types OPTIMIZING

OOB Read

OOB Write

NULL-Deref

UAF

Unknown

Figure 10 – Vuln. types for QUICK compiler Figure 9 – Vuln. types percentage for OPTIMIZING compiler

© 2015 CENSUS S.A.
13

References

n dexFuzz project (Stephen Kyle, ARM)

n State of the ART: Exploring the New Android KitKat Runtime (Paul Sabanal,
HITB2014AMS, IBM X-Force)

n Hiding Behind ART (Paul Sabanal BHASIA2015, IBM X-Force)

n Android Internals: A Confectioner's Cookbook (Jonathan Levin)

n Android Hacker's Handbook (Joshua J. Drake, Zach Lanier, Collin, Pau Oliva Fora,
Stephen A. Ridley, Georg Wicherski)

n Introduction to Android 5 Security (Lukas Aron, Petr Hanacek)

n The State of ASLR on Android Lollipop (Daniel Micay, COPPERHEAD)

n Matteo Franchin - ART’s Quick Compiler: an unofficial overview

n Making Software Dumber (Tavis Ormandy)

n DEX format spec:
https://source.android.com/devices/tech/dalvik/dex-format.html

n Android ART official documentation:
https://source.android.com/devices/tech/dalvik/configure.html

n AFL Fuzzer (Michał Zalewski):
http://lcamtuf.coredump.cx/afl/technical_details.txt

n LLVM LibFuzzer: http://llvm.org/docs/LibFuzzer.html

n Melkor ELF Fuzzer (Alejandro Hernández, IOActive):
https://github.com/IOActive/Melkor_ELF_Fuzzer

