

Relying on FOSS - Risk Perspectives

FOSSCOMM 2016

Dimitris Glynos

dimitris at census-labs.com
@dfunc on Twitter

The importance of FOSS

● From CIO.gov

... using and contributing back to open source software
can fuel innovation, lower costs, and benefit the
public.

● Gartner, 2015
– 1.3 billion devices run Linux-based Android

● Jacob Appelbaum, #31C3
– OTR and GnuPG seem to have evaded state-

sponsored eavesdropping :-)

The Cathedral & the Bazaar

● Two very different models of development
● We would like to think that both build software for a purpose
● Cathedral

– Software built by an organization

– Closely follows and supports the customer demands

● Bazaar
– Software built by the community

– Features are built and maintained based on the needs (and views)
of the community

Theme of this talk

● Risk perspectives related to the use / creation /
maintenance of FOSS within an organization

● Please note
– we will not be considering risks related to the

adoption of FOSS (e.g. hidden costs of ownership)

Definition of Risk

● Risk is the Likelihood of Danger
– Risk = Likelihood x Impact

● Organizations identify and measure risks in
order to better handle and mitigate them
– Business Impact Analysis

– Risk Assessment

– Security Assessments

– ...

Not all risks are the same

Exposure to FOSS

● Actual risk depends on the type and extent of
exposure
– Do you use FOSS to support internal processes and to

what extent?

– Do you use FOSS to develop software?

– Do you use FOSS in a service you provide?

– Do you use FOSS in a product you provide?

– Do you maintain your own FOSS project?

– Do you contribute to FOSS projects?

Risk #0: The invisible asset

● FOSS software is sometimes not accounted for
in an IT infrastructure
– Taken for granted; will the project be there

tomorrow?

– Not accounted for during risk assessment

– Sometimes security updates and other bugfixes are
not applied

Risk #0: The invisible asset

● Proposals for administrators
– Record all distributions and major FOSS

components used in the infrastructure

– Refrain from using custom builds

– Make sure all security (and other) policies apply to
FOSS components as well

– Provide dev teams with usage information

Risk #1: Maintenance

● Your FOSS-ninja (read: highly-skilled
administrator / developer etc.) decides to leave
the company

● Will you be able to find a substitute easily?
● Is the transition period going to be short and

smooth?

Risk #1: Maintenance

● Proposals / Notes
– As a society we must provide more opportunities for

education in FOSS topics

– My guess: there will always be room for
subcontracting FOSS work

– FOSS allows for great (and unmaintainable)
patchwork; as a community we must adopt best
practices for building maintainable systems

Risk #2: Customization

● You have to customize a certain software in
order to fulfill your needs
– Requires skill

– Requires time

– Requires maintenance of out-of-tree-patches

Risk #2: Customization

● Proposals
– Organizations must make the effort to contribute (and

maintain) their patches upstream. They will be
benefiting in the same way, from contributions made
from others.

– Having someone on-board with the ability to customize
software may be costly but is also an investment.

– Individual users and organizations should engage
more closely with FOSS dev. teams, voicing their
concerns about missing functionality in projects.

Risk #3: Change

● Critical change in project
– Users lose desired / needed functionality

– May need to look for substitute project

● Frequent change in project
– Project becomes at times unusable

– May seriously affect provided services

Risk #3: Change

● Proposals
– Be counted for! The project needs to know that

you're using a specific functionality

– If this project is important for you, engage more
closely (join mailing lists, follow conferences etc.)

– Organizations that depend on certain functionality
should fund the development and maintenance of a
'stable' branch

Risk #4: Compatibility and
Interoperability

● You may find that the software you use is not
compatible / interoperable with other software
or devices

● Very common with new hardware

Risk #4: Compatibility and
Interoperability

● Proposals
– Administrators may take a preference to vendors

providing compatibility / interoperability drivers and
middleware

– Voice your concerns to the FOSS project

– Voice your concerns to the vendor

– If it's that important, fund it

Risk #5: Quality

● A “hacky” codebase with no documentation
● A codebase containing many security defects
● Code that sometimes does not work

– Remember that “NO WARRANTIES” phrase in the
LICENSE file?

● Code maturity is not easy to achieve
– It requires an ongoing process that may not be feasible in

a poorly funded FOSS project

– Remember the OpenSSL Heartbleed bug?

Risk #5: Quality

● Proposals
– If you feel the code/docs are a mess, help fix it.

– Organizations that adopt FOSS must take the
burden to properly audit the software (and
contribute the findings of course)

– Aside from the above, developers may also use
automated tools to perform build, functional and
security testing

Risk #6: Responsiveness

● How fast does the project team respond to:
– a security bug disclosure?

– a feature request?

– an email?

● Slow response times are usually signs that a
project is undermanned

● Does the project have a grumpy lead dev? :-)

Risk #6: Responsiveness

● Proposals
– Organizations that depend on the responsiveness of

a project team should donate time and money to the
project

– Development teams should be (more) welcoming to
younger crowds that may have more time available.
GSoCs are a great way to start.

– If you find you can't work with a certain team there
may be a similar project where your contributions will
be of value.

Risk #7: Project dies

● The project is no longer maintained
● The project is no longer part of a software

distribution
● The documentation site is lost

– Remember Gentoo docs?

Risk #7: Project dies

● Proposals
– Investigate (proactively) for alternatives

– Step up to maintain

– Summon other interested parties to resurrect it

– Learn useful lessons from the dead project's history

Risk #8: Forks

● Forks are too easy
● Forks create complexity

– Imagine keeping track of important bugs on two or
more projects

● Forks divide the workforce
● Forks create empathies in the community
● Forks are sometimes the only way

– Anyone remember cdrecord?

The ffmpeg story (part 1)

● ffmpeg is an LGPL native library for media
processing

● Bugs in ffmpeg may cause memory corruption
● Bugs in ffmpeg may under certain conditions

allow for remote code execution
● See numerous Android stagefright bugs related

to ffmpeg code

ffmpeg on cve.mitre.org (230 vulns)

The ffmpeg story (part 2)

● ffmpeg is pretty important. It runs on
– Your computer (browsers, vlc etc.)

– Your mobile phone

– Your streaming media box

– Your TV

– In infotainment systems of cars

– In infotainment systems of airplanes

● And is also forked (remember libav?)
– Lead dev resigned over this in August 2015

Risk #8: Forks

● Proposal
– Don't create unnecessary forks

– Don't support unnecessary forks

– Spend the time to contribute to the existing project

– Have face-2-face meetings with the dev team to explain
your views

– Consider forks as projects that have a significantly
different goal

● Ideally make shared code a library. Don't embed code “as is”.

Risk #9: Code Integrity

● Malicious injection of code in the project or
project bundles
– Remember the OpenBSD backdoor ?

– Remember the ProFTPD backdoor ?

Risk #9: Code Integrity

● Proposals
– Development teams should take every measure

possible to minimize this risk.

– Organizations must audit the software they use and
its related infrastructure. Period.

– The community must respond rapidly to such
threats.

– Signatures from devs help.

– Reproducible builds help also.

Risk #10: © Infringement

● Contributing to a project that gets a copyright
infringement letter

● Are you protected?

Risk #10: © Infringement

● Proposals
– There's some propaganda out there that scares org's from

contributing to FOSS. Seriously, don't worry that much about it.

– Before you commit code, check if it is suitable for incorporation
to the project and compatible with the project's license

– Seek advice
● Software Freedom Law Center
● FSF Compliance Lab Team
● European Legal Network – FSF Europe
● Linux Foundation Legal Defense Fund
● ...

Conclusions

● Are we ready for world domination?
● Sustainable FOSS requires an active and

engaging user base.
● Quality FOSS requires similar processes and

funds as those available to proprietary
software. Organizations must help in this
regard.

Useful references

● Eric S. Raymond, “The Cathedral and the Bazaar”, ISBN 1-56592-
724-9.

● Federal Financial Institutions Examination Council, “Risk Management
of Free and Open Source Software”, available at
http://www.federalreserve.gov/boarddocs/srletters/2004/sr0417a1.pdf

● CVE – Common Vulnerabilities and Exposures, https://cve.mitre.org

● OSS-security mailing list, http://www.openwall.com/lists/oss-security/

● Linux Foundation Legal Program

http://www.linuxfoundation.org/programs/legal

● FSF Europe Legal Network

https://fsfe.org/activities/ftf/network.en.html

http://www.federalreserve.gov/boarddocs/srletters/2004/sr0417a1.pdf
https://cve.mitre.org/
http://www.openwall.com/lists/oss-security/
http://www.linuxfoundation.org/programs/legal
https://fsfe.org/activities/ftf/network.en.html

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

