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The importance of FOSS

● From CIO.gov

... using and contributing back to open source software 
can fuel innovation, lower costs, and benefit the 
public.

● Gartner, 2015
– 1.3 billion devices run Linux-based Android

● Jacob Appelbaum, #31C3
– OTR and GnuPG seem to have evaded state-

sponsored eavesdropping :-)



  

The Cathedral & the Bazaar

● Two very different models of development
● We would like to think that both build software for a purpose
● Cathedral

– Software built by an organization

– Closely follows and supports the customer demands

● Bazaar
– Software built by the community

– Features are built and maintained based on the needs (and views) 
of the community



  

Theme of this talk

● Risk perspectives related to the use / creation / 
maintenance of FOSS within an organization

● Please note
– we will not be considering risks related to the 

adoption of FOSS (e.g. hidden costs of ownership)



  

Definition of Risk

● Risk is the Likelihood of Danger
– Risk = Likelihood x Impact

● Organizations identify and measure risks in 
order to better handle and mitigate them
– Business Impact Analysis

– Risk Assessment

– Security Assessments

– ...



  

Not all risks are the same



  

Exposure to FOSS

● Actual risk depends on the type and extent of 
exposure
– Do you use FOSS to support internal processes and to 

what extent?

– Do you use FOSS to develop software?

– Do you use FOSS in a service you provide?

– Do you use FOSS in a product you provide?

– Do you maintain your own FOSS project?

– Do you contribute to FOSS projects?



  

Risk #0: The invisible asset

● FOSS software is sometimes not accounted for 
in an IT infrastructure
– Taken for granted; will the project be there 

tomorrow?

– Not accounted for during risk assessment

– Sometimes security updates and other bugfixes are 
not applied



  

Risk #0: The invisible asset 

● Proposals for administrators
– Record all distributions and major FOSS 

components used in the infrastructure

– Refrain from using custom builds

– Make sure all security (and other) policies apply to 
FOSS components as well

– Provide dev teams with usage information



  

Risk #1: Maintenance

● Your FOSS-ninja (read: highly-skilled 
administrator / developer etc.) decides to leave 
the company

● Will you be able to find a substitute easily?
● Is the transition period going to be short and 

smooth?



  

Risk #1: Maintenance

● Proposals / Notes
– As a society we must provide more opportunities for 

education in FOSS topics

– My guess: there will always be room for 
subcontracting FOSS work

– FOSS allows for great (and unmaintainable) 
patchwork; as a community we must adopt best 
practices for building maintainable systems 



  

Risk #2: Customization 

● You have to customize a certain software in 
order to fulfill your needs
– Requires skill

– Requires time

– Requires maintenance of out-of-tree-patches



  

Risk #2: Customization

● Proposals
– Organizations must make the effort to contribute (and 

maintain) their patches upstream. They will be 
benefiting in the same way, from contributions made 
from others.

– Having someone on-board with the ability to customize 
software may be costly but is also an investment.

– Individual users and organizations should engage 
more closely with FOSS dev. teams, voicing their 
concerns about missing functionality in projects.



  

Risk #3: Change

● Critical change in project
– Users lose desired / needed functionality

– May need to look for substitute project

● Frequent change in project
– Project becomes at times unusable

– May seriously affect provided services



  

Risk #3: Change

● Proposals
– Be counted for! The project needs to know that 

you're using a specific functionality

– If this project is important for you, engage more 
closely (join mailing lists, follow conferences etc.)

– Organizations that depend on certain functionality 
should fund the development and maintenance of a 
'stable' branch



  

Risk #4: Compatibility and 
Interoperability 

● You may find that the software you use is not 
compatible / interoperable with other software 
or devices

● Very common with new hardware



  

Risk #4: Compatibility and 
Interoperability

● Proposals
– Administrators may take a preference to vendors 

providing compatibility / interoperability  drivers and 
middleware

– Voice your concerns to the FOSS project

– Voice your concerns to the vendor

– If it's that important, fund it



  

Risk #5: Quality 

● A “hacky” codebase with no documentation
● A codebase containing many security defects
● Code that sometimes does not work

– Remember that “NO WARRANTIES” phrase in the 
LICENSE file?

● Code maturity is not easy to achieve
– It requires an ongoing process that may not be feasible in 

a poorly funded FOSS project

– Remember the OpenSSL Heartbleed bug?



  

Risk #5: Quality

● Proposals
– If you feel the code/docs are a mess, help fix it.

– Organizations that adopt FOSS must take the 
burden to properly audit the software (and 
contribute the findings of course)

– Aside from the above, developers may also use 
automated tools to perform build, functional and 
security testing



  

Risk #6: Responsiveness

● How fast does the project team respond to:
– a security bug disclosure?

– a feature request?

– an email?

● Slow response times are usually signs that a 
project is undermanned

● Does the project have a grumpy lead dev? :-)



  

Risk #6: Responsiveness

● Proposals
– Organizations that depend on the responsiveness of 

a project team should donate time and money to the 
project

– Development teams should be (more) welcoming to 
younger crowds that may have more time available. 
GSoCs are a great way to start.

– If you find you can't work with a certain team there 
may be a similar project where your contributions will 
be of value.



  

Risk #7: Project dies

● The project is no longer maintained
● The project is no longer part of a software 

distribution
● The documentation site is lost

– Remember Gentoo docs?



  

Risk #7: Project dies

● Proposals
– Investigate (proactively) for alternatives

– Step up to maintain

– Summon other interested parties to resurrect it

– Learn useful lessons from the dead project's history



  

Risk #8: Forks

● Forks are too easy
● Forks create complexity

– Imagine keeping track of important bugs on two or 
more projects

● Forks divide the workforce
● Forks create empathies in the community
● Forks are sometimes the only way

– Anyone remember cdrecord?



  

The ffmpeg story (part 1)

● ffmpeg is an LGPL native library for media 
processing

● Bugs in ffmpeg may cause memory corruption
● Bugs in ffmpeg may under certain conditions 

allow for remote code execution
● See numerous Android stagefright bugs related 

to ffmpeg code



  

ffmpeg on cve.mitre.org (230 vulns)



  

The ffmpeg story (part 2)

● ffmpeg is pretty important. It runs on
– Your computer (browsers, vlc etc.)

– Your mobile phone

– Your streaming media box

– Your TV

– In infotainment systems of cars

– In infotainment systems of airplanes

● And is also forked (remember libav?)
– Lead dev resigned over this in August 2015



  

Risk #8: Forks

● Proposal
– Don't create unnecessary forks

– Don't support unnecessary forks

– Spend the time to contribute to the existing project

– Have face-2-face meetings with the dev team to explain 
your views

– Consider forks as projects that have a significantly 
different goal

● Ideally make shared code a library. Don't embed code “as is”.



  

Risk #9: Code Integrity

● Malicious injection of code in the project or 
project bundles
– Remember the OpenBSD backdoor ?

– Remember the ProFTPD backdoor ?



  

Risk #9: Code Integrity

● Proposals
– Development teams should take every measure 

possible to minimize this risk.

– Organizations must audit the software they use and 
its related infrastructure. Period.

– The community must respond rapidly to such 
threats.

– Signatures from devs help.

– Reproducible builds help also.



  

Risk #10: © Infringement  

● Contributing to a project that gets a copyright 
infringement letter

● Are you protected?



  

Risk #10: © Infringement

● Proposals
– There's some propaganda out there that scares org's from 

contributing to FOSS. Seriously, don't worry that much about it.

– Before you commit code, check if it is suitable for incorporation 
to the project and compatible with the project's license

– Seek advice
● Software Freedom Law Center
● FSF Compliance Lab Team
● European Legal Network – FSF Europe
● Linux Foundation Legal Defense Fund
● ... 



  

Conclusions

● Are we ready for world domination?
● Sustainable FOSS requires an active and 

engaging user base.
● Quality FOSS requires similar processes and 

funds as those available to proprietary 
software. Organizations must help in this 
regard.



  

Useful references

● Eric S. Raymond, “The Cathedral and the Bazaar”, ISBN 1-56592-
724-9.

● Federal Financial Institutions Examination Council, “Risk Management 
of Free and Open Source Software”, available at 
http://www.federalreserve.gov/boarddocs/srletters/2004/sr0417a1.pdf

● CVE – Common Vulnerabilities and Exposures, https://cve.mitre.org

● OSS-security mailing list, http://www.openwall.com/lists/oss-security/

● Linux Foundation Legal Program

http://www.linuxfoundation.org/programs/legal

● FSF Europe Legal Network

https://fsfe.org/activities/ftf/network.en.html         

http://www.federalreserve.gov/boarddocs/srletters/2004/sr0417a1.pdf
https://cve.mitre.org/
http://www.openwall.com/lists/oss-security/
http://www.linuxfoundation.org/programs/legal
https://fsfe.org/activities/ftf/network.en.html


  

Questions?
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